Nuprl Lemma : select-shuffle2

[T:Type]. ∀[ps:(T × T) List].
  ∀i:ℕ||ps||. ((shuffle(ps)[2 i] fst(ps[i])) ∧ (shuffle(ps)[(2 i) 1] snd(ps[i])))


Proof




Definitions occuring in Statement :  shuffle: shuffle(ps) select: L[n] length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) all: x:A. B[x] and: P ∧ Q product: x:A × B[x] multiply: m add: m natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] and: P ∧ Q cand: c∧ B int_seg: {i..j-} lelt: i ≤ j < k guard: {T} decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: less_than: a < b squash: T nat: le: A ≤ B less_than': less_than'(a;b) subtype_rel: A ⊆B nat_plus: + true: True nequal: a ≠ b ∈  sq_type: SQType(T) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  int_nzero: -o bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  select-shuffle int_seg_properties length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermMultiply_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf length-shuffle decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf shuffle_wf itermAdd_wf int_term_value_add_lemma int_seg_wf list_wf rem_invariant false_wf le_wf int_seg_subtype_nat less_than_wf eq_int_wf subtype_base_sq int_subtype_base equal-wf-base true_wf bool_wf eqtt_to_assert assert_of_eq_int div-cancel2 nequal_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int mul-commutes zero-add div-cancel3 add-commutes intformeq_wf int_formula_prop_eq_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination dependent_set_memberEquality multiplyEquality natural_numberEquality setElimination rename hypothesis independent_pairFormation productEquality cumulativity productElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll because_Cache imageElimination addEquality independent_pairEquality sqequalAxiom universeEquality applyEquality imageMemberEquality baseClosed remainderEquality addLevel instantiate equalityTransitivity equalitySymmetry independent_functionElimination equalityElimination promote_hyp

Latex:
\mforall{}[T:Type].  \mforall{}[ps:(T  \mtimes{}  T)  List].
    \mforall{}i:\mBbbN{}||ps||.  ((shuffle(ps)[2  *  i]  \msim{}  fst(ps[i]))  \mwedge{}  (shuffle(ps)[(2  *  i)  +  1]  \msim{}  snd(ps[i])))



Date html generated: 2017_04_17-AM-08_56_31
Last ObjectModification: 2017_02_27-PM-05_13_02

Theory : list_1


Home Index