Nuprl Lemma : select-shuffle2
∀[T:Type]. ∀[ps:(T × T) List].
  ∀i:ℕ||ps||. ((shuffle(ps)[2 * i] ~ fst(ps[i])) ∧ (shuffle(ps)[(2 * i) + 1] ~ snd(ps[i])))
Proof
Definitions occuring in Statement : 
shuffle: shuffle(ps)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
product: x:A × B[x]
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
sq_type: SQType(T)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
int_nzero: ℤ-o
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
select-shuffle, 
int_seg_properties, 
length_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
length-shuffle, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
lelt_wf, 
shuffle_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
int_seg_wf, 
list_wf, 
rem_invariant, 
false_wf, 
le_wf, 
int_seg_subtype_nat, 
less_than_wf, 
eq_int_wf, 
subtype_base_sq, 
int_subtype_base, 
equal-wf-base, 
true_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
div-cancel2, 
nequal_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
mul-commutes, 
zero-add, 
div-cancel3, 
add-commutes, 
intformeq_wf, 
int_formula_prop_eq_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
dependent_set_memberEquality, 
multiplyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesis, 
independent_pairFormation, 
productEquality, 
cumulativity, 
productElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
because_Cache, 
imageElimination, 
addEquality, 
independent_pairEquality, 
sqequalAxiom, 
universeEquality, 
applyEquality, 
imageMemberEquality, 
baseClosed, 
remainderEquality, 
addLevel, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
equalityElimination, 
promote_hyp
Latex:
\mforall{}[T:Type].  \mforall{}[ps:(T  \mtimes{}  T)  List].
    \mforall{}i:\mBbbN{}||ps||.  ((shuffle(ps)[2  *  i]  \msim{}  fst(ps[i]))  \mwedge{}  (shuffle(ps)[(2  *  i)  +  1]  \msim{}  snd(ps[i])))
Date html generated:
2017_04_17-AM-08_56_31
Last ObjectModification:
2017_02_27-PM-05_13_02
Theory : list_1
Home
Index