Step
*
of Lemma
singleton-orbit
∀[T:Type]. ∀[f:T ⟶ T]. ∀[o:T List]. (o ∈ {x:T| (f x) = x ∈ T} List) supposing (orbit(T;f;o) and (||o|| = 1 ∈ ℤ))
BY
{ (Auto
THEN (FLemma `orbit-closed` [-1] THENA Auto)
THEN DVar `o'
THEN All Reduce
THEN Auto'
THEN Try ((DVar `v' THEN Auto'))
THEN MemTypeCD
THEN Auto) }
1
.....set predicate.....
1. T : Type
2. f : T ⟶ T
3. u : T
4. (||[]|| + 1) = 1 ∈ ℤ
5. orbit(T;f;[u])
6. (∀a∈[u].∀n:ℕ. (f^n a ∈ [u]))
⊢ (f u) = u ∈ T
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[f:T {}\mrightarrow{} T]. \mforall{}[o:T List].
(o \mmember{} \{x:T| (f x) = x\} List) supposing (orbit(T;f;o) and (||o|| = 1))
By
Latex:
(Auto
THEN (FLemma `orbit-closed` [-1] THENA Auto)
THEN DVar `o'
THEN All Reduce
THEN Auto'
THEN Try ((DVar `v' THEN Auto'))
THEN MemTypeCD
THEN Auto)
Home
Index