Nuprl Lemma : singleton-orbit
∀[T:Type]. ∀[f:T ⟶ T]. ∀[o:T List].  (o ∈ {x:T| (f x) = x ∈ T}  List) supposing (orbit(T;f;o) and (||o|| = 1 ∈ ℤ))
Proof
Definitions occuring in Statement : 
orbit: orbit(T;f;L)
, 
length: ||as||
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
true: True
, 
false: False
, 
cons: [a / b]
, 
top: Top
, 
prop: ℙ
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
and: P ∧ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
nat: ℕ
, 
less_than': less_than'(a;b)
, 
compose: f o g
Lemmas referenced : 
orbit-closed, 
list-cases, 
length_of_nil_lemma, 
subtype_base_sq, 
int_subtype_base, 
product_subtype_list, 
length_of_cons_lemma, 
cons_wf, 
equal_wf, 
non_neg_length, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
nil_wf, 
list-set-type2, 
orbit_wf, 
equal-wf-T-base, 
length_wf, 
list_wf, 
l_all_cons, 
all_wf, 
nat_wf, 
l_member_wf, 
fun_exp_wf, 
false_wf, 
le_wf, 
fun_exp1_lemma, 
member_singleton
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
independent_isectElimination, 
hypothesis, 
unionElimination, 
sqequalRule, 
instantiate, 
cumulativity, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
natural_numberEquality, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
isect_memberEquality, 
voidEquality, 
setEquality, 
because_Cache, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
rename, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
independent_pairFormation, 
computeAll, 
axiomEquality, 
baseClosed, 
functionEquality, 
lambdaFormation
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].  \mforall{}[o:T  List].
    (o  \mmember{}  \{x:T|  (f  x)  =  x\}    List)  supposing  (orbit(T;f;o)  and  (||o||  =  1))
Date html generated:
2017_04_17-AM-08_14_31
Last ObjectModification:
2017_02_27-PM-04_39_29
Theory : list_1
Home
Index