Nuprl Lemma : orbit-closed

[T:Type]. ∀f:T ⟶ T. ∀L:T List.  (∀a∈L.∀n:ℕ(f^n a ∈ L)) supposing orbit(T;f;L)


Proof




Definitions occuring in Statement :  orbit: orbit(T;f;L) l_all: (∀x∈L.P[x]) l_member: (x ∈ l) list: List fun_exp: f^n nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T orbit: orbit(T;f;L) and: P ∧ Q implies:  Q so_lambda: λ2x.t[x] prop: so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q l_member: (x ∈ l) exists: x:A. B[x] cand: c∧ B squash: T int_seg: {i..j-} nat: lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top true: True subtype_rel: A ⊆B guard: {T} int_nzero: -o nequal: a ≠ b ∈  nat_plus: + less_than: a < b
Lemmas referenced :  member-less_than length_wf no_repeats_witness l_all_iff nat_wf l_member_wf fun_exp_wf orbit_wf list_wf istype-universe squash_wf true_wf orbit-iterates nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-less_than subtype_rel_self iff_weakening_equal select_member remainder_wfa intformeq_wf intformless_wf int_formula_prop_eq_lemma int_formula_prop_less_lemma length_wf_nat set_subtype_base le_wf int_subtype_base nequal_wf rem_bounds_1 itermAdd_wf int_term_value_add_lemma decidable__lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality extract_by_obid isectElimination natural_numberEquality hypothesisEquality hypothesis independent_isectElimination independent_functionElimination Error :lambdaEquality_alt,  dependent_functionElimination axiomEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  rename functionEquality applyEquality setElimination Error :setIsType,  Error :universeIsType,  hyp_replacement equalitySymmetry applyLambdaEquality because_Cache Error :functionIsType,  instantiate universeEquality imageElimination equalityTransitivity Error :dependent_set_memberEquality_alt,  independent_pairFormation unionElimination approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :productIsType,  imageMemberEquality baseClosed addEquality Error :equalityIstype,  intEquality sqequalBase

Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}L:T  List.    (\mforall{}a\mmember{}L.\mforall{}n:\mBbbN{}.  (f\^{}n  a  \mmember{}  L))  supposing  orbit(T;f;L)



Date html generated: 2019_06_20-PM-01_38_09
Last ObjectModification: 2019_03_06-AM-10_51_34

Theory : list_1


Home Index