Nuprl Lemma : orbit-iterates
∀[T:Type]. ∀[f:T ⟶ T]. ∀[L:T List]. ∀[i:ℕ||L||]. ∀[n:ℕ]. ((f^n L[i]) = L[i + n rem ||L||] ∈ T) supposing orbit(T;f;L)
Proof
Definitions occuring in Statement :
orbit: orbit(T;f;L)
,
select: L[n]
,
length: ||as||
,
list: T List
,
fun_exp: f^n
,
int_seg: {i..j-}
,
nat: ℕ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
apply: f a
,
function: x:A ⟶ B[x]
,
remainder: n rem m
,
add: n + m
,
natural_number: $n
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
orbit: orbit(T;f;L)
,
and: P ∧ Q
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
all: ∀x:A. B[x]
,
top: Top
,
prop: ℙ
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
le: A ≤ B
,
less_than: a < b
,
squash: ↓T
,
decidable: Dec(P)
,
or: P ∨ Q
,
nat_plus: ℕ+
,
cand: A c∧ B
,
true: True
,
subtype_rel: A ⊆r B
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
sq_type: SQType(T)
,
compose: f o g
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
less_than': less_than'(a;b)
Lemmas referenced :
nat_properties,
full-omega-unsat,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
istype-int,
int_formula_prop_and_lemma,
istype-void,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
istype-less_than,
fun_exp0_lemma,
subtract-1-ge-0,
istype-nat,
int_seg_wf,
length_wf,
orbit_wf,
list_wf,
istype-universe,
select_wf,
int_seg_properties,
decidable__le,
intformnot_wf,
int_formula_prop_not_lemma,
decidable__lt,
itermAdd_wf,
int_term_value_add_lemma,
istype-le,
rem_bounds_1,
decidable__equal_int,
intformeq_wf,
int_formula_prop_eq_lemma,
equal_wf,
squash_wf,
true_wf,
le_wf,
less_than_wf,
rem_base_case,
subtype_rel_self,
iff_weakening_equal,
subtype_base_sq,
int_subtype_base,
rem_add1,
subtract_wf,
itermSubtract_wf,
int_term_value_subtract_lemma,
not_wf,
bnot_wf,
assert_wf,
equal-wf-base,
bool_wf,
eq_int_wf,
satisfiable-full-omega-tt,
fun_exp_unroll,
uiff_transitivity,
eqtt_to_assert,
assert_of_eq_int,
iff_transitivity,
iff_weakening_uiff,
eqff_to_assert,
assert_of_bnot,
false_wf,
equal-wf-T-base,
lelt_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
introduction,
cut,
sqequalHypSubstitution,
productElimination,
thin,
extract_by_obid,
isectElimination,
hypothesisEquality,
hypothesis,
setElimination,
rename,
intWeakElimination,
Error :lambdaFormation_alt,
natural_numberEquality,
independent_isectElimination,
approximateComputation,
independent_functionElimination,
Error :dependent_pairFormation_alt,
Error :lambdaEquality_alt,
int_eqEquality,
dependent_functionElimination,
Error :isect_memberEquality_alt,
voidElimination,
sqequalRule,
independent_pairFormation,
Error :universeIsType,
axiomEquality,
Error :functionIsTypeImplies,
Error :inhabitedIsType,
Error :isectIsTypeImplies,
Error :functionIsType,
because_Cache,
instantiate,
universeEquality,
imageElimination,
unionElimination,
Error :dependent_set_memberEquality_alt,
addEquality,
applyEquality,
imageMemberEquality,
baseClosed,
equalityTransitivity,
equalitySymmetry,
productEquality,
cumulativity,
intEquality,
closedConclusion,
baseApply,
computeAll,
voidEquality,
isect_memberEquality,
lambdaEquality,
dependent_pairFormation,
dependent_set_memberEquality,
lambdaFormation,
equalityElimination,
impliesFunctionality,
functionExtensionality
Latex:
\mforall{}[T:Type]. \mforall{}[f:T {}\mrightarrow{} T]. \mforall{}[L:T List].
\mforall{}[i:\mBbbN{}||L||]. \mforall{}[n:\mBbbN{}]. ((f\^{}n L[i]) = L[i + n rem ||L||]) supposing orbit(T;f;L)
Date html generated:
2019_06_20-PM-01_38_00
Last ObjectModification:
2019_03_06-AM-11_06_13
Theory : list_1
Home
Index