Nuprl Lemma : orbit_wf
∀[T:Type]. ∀[f:T ⟶ T]. ∀[L:T List]. (orbit(T;f;L) ∈ ℙ)
Proof
Definitions occuring in Statement :
orbit: orbit(T;f;L)
,
list: T List
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
orbit: orbit(T;f;L)
,
prop: ℙ
,
and: P ∧ Q
,
so_lambda: λ2x.t[x]
,
int_seg: {i..j-}
,
uimplies: b supposing a
,
guard: {T}
,
lelt: i ≤ j < k
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
implies: P
⇒ Q
,
not: ¬A
,
top: Top
,
less_than: a < b
,
squash: ↓T
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
uiff: uiff(P;Q)
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
bfalse: ff
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
nequal: a ≠ b ∈ T
,
so_apply: x[s]
Lemmas referenced :
less_than_wf,
length_wf,
no_repeats_wf,
all_wf,
int_seg_wf,
equal_wf,
select_wf,
int_seg_properties,
decidable__le,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
decidable__lt,
intformless_wf,
int_formula_prop_less_lemma,
eq_int_wf,
subtract_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_int,
false_wf,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
itermAdd_wf,
int_term_value_add_lemma,
intformeq_wf,
itermSubtract_wf,
int_formula_prop_eq_lemma,
int_term_value_subtract_lemma,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
productEquality,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
natural_numberEquality,
cumulativity,
hypothesisEquality,
hypothesis,
because_Cache,
lambdaEquality,
applyEquality,
functionExtensionality,
setElimination,
rename,
independent_isectElimination,
productElimination,
dependent_functionElimination,
unionElimination,
dependent_pairFormation,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
imageElimination,
lambdaFormation,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
promote_hyp,
instantiate,
independent_functionElimination,
addEquality,
axiomEquality,
functionEquality,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[f:T {}\mrightarrow{} T]. \mforall{}[L:T List]. (orbit(T;f;L) \mmember{} \mBbbP{})
Date html generated:
2017_04_17-AM-08_14_03
Last ObjectModification:
2017_02_27-PM-04_39_21
Theory : list_1
Home
Index