Nuprl Lemma : orbit_wf

[T:Type]. ∀[f:T ⟶ T]. ∀[L:T List].  (orbit(T;f;L) ∈ ℙ)


Proof




Definitions occuring in Statement :  orbit: orbit(T;f;L) list: List uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T orbit: orbit(T;f;L) prop: and: P ∧ Q so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top less_than: a < b squash: T bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) le: A ≤ B less_than': less_than'(a;b) bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  so_apply: x[s]
Lemmas referenced :  less_than_wf length_wf no_repeats_wf all_wf int_seg_wf equal_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma eq_int_wf subtract_wf bool_wf eqtt_to_assert assert_of_eq_int false_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int itermAdd_wf int_term_value_add_lemma intformeq_wf itermSubtract_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality cumulativity hypothesisEquality hypothesis because_Cache lambdaEquality applyEquality functionExtensionality setElimination rename independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination lambdaFormation equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate independent_functionElimination addEquality axiomEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].  \mforall{}[L:T  List].    (orbit(T;f;L)  \mmember{}  \mBbbP{})



Date html generated: 2017_04_17-AM-08_14_03
Last ObjectModification: 2017_02_27-PM-04_39_21

Theory : list_1


Home Index