Nuprl Lemma : list-set-type2

[T:Type]. ∀[L:T List]. ∀[P:T ⟶ ℙ].  L ∈ {x:T| P[x]}  List supposing (∀x∈L.P[x])


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) list: List uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q guard: {T}
Lemmas referenced :  list-set-type l_all_wf l_member_wf list_wf l_all_iff subtype_rel_list_set
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry applyEquality sqequalRule axiomEquality lambdaEquality setElimination rename setEquality isect_memberEquality because_Cache functionEquality cumulativity universeEquality dependent_functionElimination productElimination independent_functionElimination independent_isectElimination lambdaFormation

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    L  \mmember{}  \{x:T|  P[x]\}    List  supposing  (\mforall{}x\mmember{}L.P[x])



Date html generated: 2016_05_14-AM-06_41_11
Last ObjectModification: 2016_03_15-PM-04_40_08

Theory : list_0


Home Index