Nuprl Lemma : list-set-type2
∀[T:Type]. ∀[L:T List]. ∀[P:T ⟶ ℙ].  L ∈ {x:T| P[x]}  List supposing (∀x∈L.P[x])
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x])
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
guard: {T}
Lemmas referenced : 
list-set-type, 
l_all_wf, 
l_member_wf, 
list_wf, 
l_all_iff, 
subtype_rel_list_set
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
applyEquality, 
sqequalRule, 
axiomEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
lambdaFormation
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    L  \mmember{}  \{x:T|  P[x]\}    List  supposing  (\mforall{}x\mmember{}L.P[x])
Date html generated:
2016_05_14-AM-06_41_11
Last ObjectModification:
2016_03_15-PM-04_40_08
Theory : list_0
Home
Index