Step
*
2
1
1
of Lemma
sublist_append_front
.....assertion.....
1. [T] : Type
2. L : T List
3. L1 : T List
4. L2 : T List
5. f : ℕ||L|| ⟶ ℕ||L1 @ L2||
6. increasing(f;||L||)
7. ∀j:ℕ||L||. (L[j] = L1 @ L2[f j] ∈ T)
8. ¬↑null(L)
9. ¬(last(L) ∈ L2)
⊢ f ∈ ℕ||L|| ⟶ ℕ||L1||
BY
{ Assert f (||L|| - 1) < ||L1|| }
1
.....assertion.....
1. T : Type
2. L : T List
3. L1 : T List
4. L2 : T List
5. f : ℕ||L|| ⟶ ℕ||L1 @ L2||
6. increasing(f;||L||)
7. ∀j:ℕ||L||. (L[j] = L1 @ L2[f j] ∈ T)
8. ¬↑null(L)
9. ¬(last(L) ∈ L2)
⊢ f (||L|| - 1) < ||L1||
2
1. [T] : Type
2. L : T List
3. L1 : T List
4. L2 : T List
5. f : ℕ||L|| ⟶ ℕ||L1 @ L2||
6. increasing(f;||L||)
7. ∀j:ℕ||L||. (L[j] = L1 @ L2[f j] ∈ T)
8. ¬↑null(L)
9. ¬(last(L) ∈ L2)
10. f (||L|| - 1) < ||L1||
⊢ f ∈ ℕ||L|| ⟶ ℕ||L1||
Latex:
Latex:
.....assertion.....
1. [T] : Type
2. L : T List
3. L1 : T List
4. L2 : T List
5. f : \mBbbN{}||L|| {}\mrightarrow{} \mBbbN{}||L1 @ L2||
6. increasing(f;||L||)
7. \mforall{}j:\mBbbN{}||L||. (L[j] = L1 @ L2[f j])
8. \mneg{}\muparrow{}null(L)
9. \mneg{}(last(L) \mmember{} L2)
\mvdash{} f \mmember{} \mBbbN{}||L|| {}\mrightarrow{} \mBbbN{}||L1||
By
Latex:
Assert f (||L|| - 1) < ||L1||
Home
Index