Step
*
1
of Lemma
summand-le-lsum
1. T : Type
2. L : T List
3. f : {x:T| (x ∈ L)} ⟶ ℤ
4. ∀x:{x:T| (x ∈ L)} . (0 ≤ f[x])
5. x : {x:T| (x ∈ L)}
6. f[x] ≤ l_sum(map(f;L))
⊢ f[x] ≤ Σ(f[x] | x ∈ L)
BY
{ ((Assert L ∈ {x:T| (x ∈ L)} List BY Auto) THEN NthHypSq (-2) THEN Auto) }
1
1. T : Type
2. L : T List
3. f : {x:T| (x ∈ L)} ⟶ ℤ
4. ∀x:{x:T| (x ∈ L)} . (0 ≤ f[x])
5. x : {x:T| (x ∈ L)}
6. f[x] ≤ l_sum(map(f;L))
7. L ∈ {x:T| (x ∈ L)} List
⊢ Σ(f[x] | x ∈ L) = l_sum(map(f;L)) ∈ ℤ
Latex:
Latex:
1. T : Type
2. L : T List
3. f : \{x:T| (x \mmember{} L)\} {}\mrightarrow{} \mBbbZ{}
4. \mforall{}x:\{x:T| (x \mmember{} L)\} . (0 \mleq{} f[x])
5. x : \{x:T| (x \mmember{} L)\}
6. f[x] \mleq{} l\_sum(map(f;L))
\mvdash{} f[x] \mleq{} \mSigma{}(f[x] | x \mmember{} L)
By
Latex:
((Assert L \mmember{} \{x:T| (x \mmember{} L)\} List BY Auto) THEN NthHypSq (-2) THEN Auto)
Home
Index