Nuprl Lemma : summand-le-lsum

[T:Type]. ∀[L:T List]. ∀[f:{x:T| (x ∈ L)}  ⟶ ℤ].
  ∀x:{x:T| (x ∈ L)} (f[x] ≤ Σ(f[x] x ∈ L)) supposing ∀x:{x:T| (x ∈ L)} (0 ≤ f[x])


Proof




Definitions occuring in Statement :  lsum: Σ(f[x] x ∈ L) l_member: (x ∈ l) list: List uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] prop: le: A ≤ B and: P ∧ Q so_apply: x[s] sq_type: SQType(T) implies:  Q guard: {T} lsum: Σ(f[x] x ∈ L) squash: T true: True
Lemmas referenced :  summand-le-l_sum l_member_wf le_witness_for_triv istype-le istype-int list_wf istype-universe list-subtype subtype_base_sq int_subtype_base l_sum_wf squash_wf true_wf map_wf eta_conv
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination lambdaFormation_alt dependent_functionElimination setIsType universeIsType sqequalRule lambdaEquality_alt productElimination equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType functionIsType natural_numberEquality applyEquality instantiate universeEquality cumulativity intEquality independent_functionElimination imageElimination setEquality imageMemberEquality baseClosed

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbZ{}].
    \mforall{}x:\{x:T|  (x  \mmember{}  L)\}  .  (f[x]  \mleq{}  \mSigma{}(f[x]  |  x  \mmember{}  L))  supposing  \mforall{}x:\{x:T|  (x  \mmember{}  L)\}  .  (0  \mleq{}  f[x])



Date html generated: 2020_05_19-PM-09_48_40
Last ObjectModification: 2020_01_23-PM-00_57_17

Theory : list_1


Home Index