Nuprl Lemma : summand-le-lsum
∀[T:Type]. ∀[L:T List]. ∀[f:{x:T| (x ∈ L)}  ⟶ ℤ].
  ∀x:{x:T| (x ∈ L)} . (f[x] ≤ Σ(f[x] | x ∈ L)) supposing ∀x:{x:T| (x ∈ L)} . (0 ≤ f[x])
Proof
Definitions occuring in Statement : 
lsum: Σ(f[x] | x ∈ L)
, 
l_member: (x ∈ l)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
lsum: Σ(f[x] | x ∈ L)
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
summand-le-l_sum, 
l_member_wf, 
le_witness_for_triv, 
istype-le, 
istype-int, 
list_wf, 
istype-universe, 
list-subtype, 
subtype_base_sq, 
int_subtype_base, 
l_sum_wf, 
squash_wf, 
true_wf, 
map_wf, 
eta_conv
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
lambdaFormation_alt, 
dependent_functionElimination, 
setIsType, 
universeIsType, 
sqequalRule, 
lambdaEquality_alt, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
functionIsType, 
natural_numberEquality, 
applyEquality, 
instantiate, 
universeEquality, 
cumulativity, 
intEquality, 
independent_functionElimination, 
imageElimination, 
setEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbZ{}].
    \mforall{}x:\{x:T|  (x  \mmember{}  L)\}  .  (f[x]  \mleq{}  \mSigma{}(f[x]  |  x  \mmember{}  L))  supposing  \mforall{}x:\{x:T|  (x  \mmember{}  L)\}  .  (0  \mleq{}  f[x])
Date html generated:
2020_05_19-PM-09_48_40
Last ObjectModification:
2020_01_23-PM-00_57_17
Theory : list_1
Home
Index