Step
*
of Lemma
Vieta-jumping-example2-corollary
∀k:ℤ. ∀a,b:ℕ. (((((a * a) + (b * b)) + 1) = (k * a * b) ∈ ℤ)
⇒ (a ≤ b)
⇒ (∃n:ℕ. (<a, b> = vexample(n;1;1) ∈ (ℤ × ℤ)))\000C)
BY
{ (InstLemma `Vieta-jumping-example2` []
THEN RepeatFor 4 ((ParallelLast' THENA Auto))
THEN HypSubst' (-1) (-2)
THEN Thin (-1)
THEN (D 0 THENA Auto)
THEN RepeatFor 4 (MoveToConcl (-1))
THEN CompleteInductionOnNat
THEN Auto) }
1
1. k : ℤ
2. a : ℕ
3. ∀a:ℕa. ∀b:ℕ. (((((a * a) + (b * b)) + 1) = (3 * a * b) ∈ ℤ)
⇒ (a ≤ b)
⇒ (∃n:ℕ. (<a, b> = vexample(n;1;1) ∈ (ℤ × ℤ)\000C)))
4. b : ℕ
5. (((a * a) + (b * b)) + 1) = (3 * a * b) ∈ ℤ
6. a ≤ b
⊢ ∃n:ℕ. (<a, b> = vexample(n;1;1) ∈ (ℤ × ℤ))
Latex:
Latex:
\mforall{}k:\mBbbZ{}. \mforall{}a,b:\mBbbN{}.
(((((a * a) + (b * b)) + 1) = (k * a * b)) {}\mRightarrow{} (a \mleq{} b) {}\mRightarrow{} (\mexists{}n:\mBbbN{}. (<a, b> = vexample(n;1;1))))
By
Latex:
(InstLemma `Vieta-jumping-example2` []
THEN RepeatFor 4 ((ParallelLast' THENA Auto))
THEN HypSubst' (-1) (-2)
THEN Thin (-1)
THEN (D 0 THENA Auto)
THEN RepeatFor 4 (MoveToConcl (-1))
THEN CompleteInductionOnNat
THEN Auto)
Home
Index