Nuprl Lemma : Vieta-jumping-example2-corollary
∀k:ℤ. ∀a,b:ℕ.  (((((a * a) + (b * b)) + 1) = (k * a * b) ∈ ℤ) ⇒ (a ≤ b) ⇒ (∃n:ℕ. (<a, b> = vexample(n;1;1) ∈ (ℤ × ℤ)))\000C)
Proof
Definitions occuring in Statement : 
vexample: vexample(n;a;b), 
nat: ℕ, 
le: A ≤ B, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
pair: <a, b>, 
product: x:A × B[x], 
multiply: n * m, 
add: n + m, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
sq_type: SQType(T), 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
prop: ℙ, 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nat: ℕ, 
ge: i ≥ j , 
subtract: n - m, 
vexample: vexample(n;a;b), 
nat_plus: ℕ+, 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q, 
cand: A c∧ B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
less_than: a < b, 
less_than': less_than'(a;b), 
bfalse: ff, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
rev_implies: P ⇐ Q, 
nequal: a ≠ b ∈ T , 
has-value: (a)↓, 
fun_exp: f^n, 
primrec: primrec(n;b;c), 
primtailrec: primtailrec(n;i;b;f), 
compose: f o g
Lemmas referenced : 
Vieta-jumping-example2, 
subtype_base_sq, 
int_subtype_base, 
int_seg_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
decidable__equal_int, 
subtract_wf, 
set_subtype_base, 
lelt_wf, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__le, 
decidable__lt, 
istype-le, 
istype-less_than, 
subtype_rel_self, 
le_wf, 
nat_wf, 
equal-wf-base, 
primrec-wf2, 
nat_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-nat, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
int_entire, 
exp_preserves_lt, 
less_than_wf, 
squash_wf, 
true_wf, 
exp2, 
iff_weakening_equal, 
mul_bounds_1a, 
absval_unfold, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-top, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
itermMinus_wf, 
int_term_value_minus_lemma, 
exp_preserves_le, 
absval_wf, 
absval_squared, 
le_functionality, 
multiply_functionality_wrt_le, 
le_weakening, 
eq_int_wf, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
add-subtract-cancel, 
value-type-has-value, 
set-value-type, 
int-value-type, 
product_subtype_base, 
ge_wf, 
subtract-1-ge-0, 
fun_exp_add_apply, 
base_wf, 
subtract-add-cancel, 
fun_exp_com
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
productElimination, 
natural_numberEquality, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :universeIsType, 
unionElimination, 
applyEquality, 
Error :inhabitedIsType, 
applyLambdaEquality, 
Error :dependent_set_memberEquality_alt, 
because_Cache, 
Error :productIsType, 
hypothesis_subsumption, 
Error :equalityIstype, 
baseApply, 
closedConclusion, 
baseClosed, 
sqequalBase, 
Error :functionIsType, 
functionEquality, 
productEquality, 
Error :setIsType, 
addEquality, 
independent_pairEquality, 
multiplyEquality, 
imageElimination, 
imageMemberEquality, 
universeEquality, 
minusEquality, 
equalityElimination, 
lessCases, 
Error :isect_memberFormation_alt, 
axiomSqEquality, 
Error :isectIsTypeImplies, 
promote_hyp, 
int_eqReduceTrueSq, 
int_eqReduceFalseSq, 
callbyvalueReduce, 
sqleReflexivity, 
intWeakElimination, 
Error :functionIsTypeImplies, 
sqequalIntensionalEquality, 
functionExtensionality, 
spreadEquality
Latex:
\mforall{}k:\mBbbZ{}.  \mforall{}a,b:\mBbbN{}.
    (((((a  *  a)  +  (b  *  b))  +  1)  =  (k  *  a  *  b))  {}\mRightarrow{}  (a  \mleq{}  b)  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}.  (<a,  b>  =  vexample(n;1;1))))
Date html generated:
2019_06_20-PM-02_43_47
Last ObjectModification:
2019_03_11-PM-06_29_12
Theory : num_thy_1
Home
Index