Nuprl Lemma : fun_exp_add_apply

[T:Type]. ∀[n,m:ℕ]. ∀[f:T ⟶ T]. ∀[x:T].  ((f^n (f^m x)) (f^n x) ∈ T)


Proof




Definitions occuring in Statement :  fun_exp: f^n nat: uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] add: m universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop: so_lambda: λ2x.t[x] true: True so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q fun_exp: f^n primrec: primrec(n;b;c) compose: g
Lemmas referenced :  compose_wf iff_weakening_equal fun_exp_add fun_exp_wf equal_wf nat_wf true_wf squash_wf uall_wf
Rules used in proof :  cut applyEquality instantiate sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination lemma_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry functionEquality cumulativity universeEquality because_Cache sqequalRule natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination isect_memberFormation introduction isect_memberEquality axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[f:T  {}\mrightarrow{}  T].  \mforall{}[x:T].    ((f\^{}n  (f\^{}m  x))  =  (f\^{}n  +  m  x))



Date html generated: 2016_05_13-PM-04_06_42
Last ObjectModification: 2016_01_14-PM-07_46_27

Theory : fun_1


Home Index