Nuprl Lemma : fun_exp_add
∀[T:Type]. ∀[n,m:ℕ]. ∀[f:T ⟶ T].  (f^n + m = (f^n o f^m) ∈ (T ⟶ T))
Proof
Definitions occuring in Statement : 
fun_exp: f^n
, 
compose: f o g
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
true: True
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
fun_exp: f^n
Lemmas referenced : 
uall_wf, 
squash_wf, 
true_wf, 
nat_wf, 
equal_wf, 
fun_exp_wf, 
add_nat_wf, 
sq_stable__le, 
le_wf, 
fun_exp_compose, 
iff_weakening_equal, 
primrec_add, 
compose_wf, 
int_seg_wf, 
primrec_wf
Rules used in proof : 
cut, 
applyEquality, 
instantiate, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
because_Cache, 
sqequalRule, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
lambdaFormation, 
natural_numberEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
dependent_functionElimination, 
functionExtensionality, 
independent_isectElimination, 
productElimination, 
isect_memberFormation, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[T:Type].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[f:T  {}\mrightarrow{}  T].    (f\^{}n  +  m  =  (f\^{}n  o  f\^{}m))
Date html generated:
2017_04_14-AM-07_34_39
Last ObjectModification:
2017_02_27-PM-03_07_33
Theory : fun_1
Home
Index