Nuprl Lemma : fun_exp_add

[T:Type]. ∀[n,m:ℕ]. ∀[f:T ⟶ T].  (f^n (f^n f^m) ∈ (T ⟶ T))


Proof




Definitions occuring in Statement :  fun_exp: f^n compose: g nat: uall: [x:A]. B[x] function: x:A ⟶ B[x] add: m universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop: so_lambda: λ2x.t[x] nat: all: x:A. B[x] implies:  Q guard: {T} sq_stable: SqStable(P) true: True so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q fun_exp: f^n
Lemmas referenced :  uall_wf squash_wf true_wf nat_wf equal_wf fun_exp_wf add_nat_wf sq_stable__le le_wf fun_exp_compose iff_weakening_equal primrec_add compose_wf int_seg_wf primrec_wf
Rules used in proof :  cut applyEquality instantiate sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry functionEquality cumulativity universeEquality because_Cache sqequalRule dependent_set_memberEquality addEquality setElimination rename lambdaFormation natural_numberEquality independent_functionElimination imageMemberEquality baseClosed dependent_functionElimination functionExtensionality independent_isectElimination productElimination isect_memberFormation isect_memberEquality axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[f:T  {}\mrightarrow{}  T].    (f\^{}n  +  m  =  (f\^{}n  o  f\^{}m))



Date html generated: 2017_04_14-AM-07_34_39
Last ObjectModification: 2017_02_27-PM-03_07_33

Theory : fun_1


Home Index