Nuprl Lemma : fun_exp_compose

[T:Type]. ∀[n:ℕ]. ∀[h,f:T ⟶ T].  ((f^n h) primrec(n;h;λi,g. (f g)) ∈ (T ⟶ T))


Proof




Definitions occuring in Statement :  fun_exp: f^n compose: g primrec: primrec(n;b;c) nat: uall: [x:A]. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: fun_exp: f^n all: x:A. B[x] top: Top decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) true: True compose: g sq_type: SQType(T) squash: T
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf primrec0_lemma decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel nat_wf subtype_base_sq int_subtype_base primrec_add le_wf not-le-2 compose_wf int_seg_wf primrec1_lemma equal_wf primrec_wf squash_wf true_wf fun_exp_wf comp_assoc iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality axiomEquality functionEquality cumulativity voidEquality unionElimination independent_pairFormation productElimination addEquality applyEquality intEquality minusEquality because_Cache universeEquality functionExtensionality instantiate equalityTransitivity equalitySymmetry dependent_set_memberEquality hyp_replacement applyLambdaEquality imageElimination imageMemberEquality baseClosed

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[h,f:T  {}\mrightarrow{}  T].    ((f\^{}n  o  h)  =  primrec(n;h;\mlambda{}i,g.  (f  o  g)))



Date html generated: 2017_04_14-AM-07_34_37
Last ObjectModification: 2017_02_27-PM-03_07_44

Theory : fun_1


Home Index