Nuprl Lemma : fun_exp_compose
∀[T:Type]. ∀[n:ℕ]. ∀[h,f:T ⟶ T].  ((f^n o h) = primrec(n;h;λi,g. (f o g)) ∈ (T ⟶ T))
Proof
Definitions occuring in Statement : 
fun_exp: f^n
, 
compose: f o g
, 
primrec: primrec(n;b;c)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
fun_exp: f^n
, 
all: ∀x:A. B[x]
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
compose: f o g
, 
sq_type: SQType(T)
, 
squash: ↓T
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
primrec0_lemma, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
nat_wf, 
subtype_base_sq, 
int_subtype_base, 
primrec_add, 
le_wf, 
not-le-2, 
compose_wf, 
int_seg_wf, 
primrec1_lemma, 
equal_wf, 
primrec_wf, 
squash_wf, 
true_wf, 
fun_exp_wf, 
comp_assoc, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
functionEquality, 
cumulativity, 
voidEquality, 
unionElimination, 
independent_pairFormation, 
productElimination, 
addEquality, 
applyEquality, 
intEquality, 
minusEquality, 
because_Cache, 
universeEquality, 
functionExtensionality, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
hyp_replacement, 
applyLambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[h,f:T  {}\mrightarrow{}  T].    ((f\^{}n  o  h)  =  primrec(n;h;\mlambda{}i,g.  (f  o  g)))
Date html generated:
2017_04_14-AM-07_34_37
Last ObjectModification:
2017_02_27-PM-03_07_44
Theory : fun_1
Home
Index