Step
*
of Lemma
add-div-when-divides2
∀a,b,x,y:ℤ. ∀c:ℤ-o. ((((a ÷ c) * x) + ((b ÷ c) * y)) = (((a * x) + (b * y)) ÷ c) ∈ ℤ) supposing ((c | a) and (c | b))
BY
{ (Auto
THEN (D -2 THEN (RWO "-2" 0 THENA Auto))
THEN D -1
THEN (RWO "-1" 0 THENA Auto)
THEN (RWO "div-cancel2" 0 THENA Auto)
THEN Subst' ((c * c1) * x) + ((c * c@0) * y) ~ c * ((c1 * x) + (c@0 * y)) 0
THEN Auto) }
Latex:
Latex:
\mforall{}a,b,x,y:\mBbbZ{}. \mforall{}c:\mBbbZ{}\msupminus{}\msupzero{}.
((((a \mdiv{} c) * x) + ((b \mdiv{} c) * y)) = (((a * x) + (b * y)) \mdiv{} c)) supposing ((c | a) and (c | b))
By
Latex:
(Auto
THEN (D -2 THEN (RWO "-2" 0 THENA Auto))
THEN D -1
THEN (RWO "-1" 0 THENA Auto)
THEN (RWO "div-cancel2" 0 THENA Auto)
THEN Subst' ((c * c1) * x) + ((c * c@0) * y) \msim{} c * ((c1 * x) + (c@0 * y)) 0
THEN Auto)
Home
Index