Nuprl Lemma : add-div-when-divides2
∀a,b,x,y:ℤ. ∀c:ℤ-o.  ((((a ÷ c) * x) + ((b ÷ c) * y)) = (((a * x) + (b * y)) ÷ c) ∈ ℤ) supposing ((c | a) and (c | b))
Proof
Definitions occuring in Statement : 
divides: b | a
, 
int_nzero: ℤ-o
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
divide: n ÷ m
, 
multiply: n * m
, 
add: n + m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
divides: b | a
, 
exists: ∃x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
int_nzero: ℤ-o
, 
prop: ℙ
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
sq_type: SQType(T)
, 
guard: {T}
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
divides_wf, 
int_nzero_wf, 
istype-int, 
divide_wfa, 
subtype_base_sq, 
int_subtype_base, 
int_nzero_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
divide-exact, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
add_functionality_wrt_eq, 
subtype_rel_self, 
iff_weakening_equal, 
div-cancel2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
Error :universeIsType, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
Error :isect_memberEquality_alt, 
axiomEquality, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
intEquality, 
multiplyEquality, 
because_Cache, 
natural_numberEquality, 
instantiate, 
cumulativity, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
applyEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}a,b,x,y:\mBbbZ{}.  \mforall{}c:\mBbbZ{}\msupminus{}\msupzero{}.
    ((((a  \mdiv{}  c)  *  x)  +  ((b  \mdiv{}  c)  *  y))  =  (((a  *  x)  +  (b  *  y))  \mdiv{}  c))  supposing  ((c  |  a)  and  (c  |  b))
Date html generated:
2019_06_20-PM-02_20_38
Last ObjectModification:
2019_03_06-AM-11_06_00
Theory : num_thy_1
Home
Index