Nuprl Lemma : divides_wf
∀[a,b:ℤ].  (a | b ∈ ℙ)
Proof
Definitions occuring in Statement : 
divides: b | a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
divides: b | a
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
equal-wf-base, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
baseApply, 
closedConclusion, 
baseClosed, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
isect_memberEquality, 
Error :universeIsType
Latex:
\mforall{}[a,b:\mBbbZ{}].    (a  |  b  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-02_19_51
Last ObjectModification:
2018_09_26-PM-05_45_20
Theory : num_thy_1
Home
Index