Step
*
of Lemma
all-even-implies-sum-even
No Annotations
∀[n:ℕ]. ∀[f:ℕn ⟶ ℤ]. ↑isEven(Σ(f[x] | x < n)) supposing ∀x:ℕn. (↑isEven(f[x]))
BY
{ (Auto
THEN (RWO "isEven-sum" 0 THEN Auto)
THEN RWO "filter_is_nil" 0
THEN Auto
THEN Reduce 0
THEN RWO "l_all_iff" 0
THEN Auto
THEN D -3 With ⌜x⌝
THEN EAuto 1) }
Latex:
Latex:
No Annotations
\mforall{}[n:\mBbbN{}]. \mforall{}[f:\mBbbN{}n {}\mrightarrow{} \mBbbZ{}]. \muparrow{}isEven(\mSigma{}(f[x] | x < n)) supposing \mforall{}x:\mBbbN{}n. (\muparrow{}isEven(f[x]))
By
Latex:
(Auto
THEN (RWO "isEven-sum" 0 THEN Auto)
THEN RWO "filter\_is\_nil" 0
THEN Auto
THEN Reduce 0
THEN RWO "l\_all\_iff" 0
THEN Auto
THEN D -3 With \mkleeneopen{}x\mkleeneclose{}
THEN EAuto 1)
Home
Index