Nuprl Lemma : all-even-implies-sum-even

[n:ℕ]. ∀[f:ℕn ⟶ ℤ].  ↑isEven(Σ(f[x] x < n)) supposing ∀x:ℕn. (↑isEven(f[x]))


Proof




Definitions occuring in Statement :  isEven: isEven(n) sum: Σ(f[x] x < k) int_seg: {i..j-} nat: assert: b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] nat: uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) all: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: iff: ⇐⇒ Q rev_implies:  Q assert: b ifthenelse: if then else fi  isEven: isEven(n) eq_int: (i =z j) modulus: mod n remainder: rem m length: ||as|| list_ind: list_ind nil: [] it: btrue: tt true: True
Lemmas referenced :  isEven-sum int_seg_wf filter_is_nil isOdd_wf upto_wf l_all_iff not_wf assert_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than l_member_wf even-iff-not-odd istype-assert assert_witness isEven_wf sum_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality_alt applyEquality universeIsType natural_numberEquality setElimination rename hypothesis productElimination independent_isectElimination because_Cache dependent_functionElimination dependent_set_memberEquality_alt imageElimination independent_pairFormation unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination productIsType setIsType lambdaFormation_alt functionIsType isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    \muparrow{}isEven(\mSigma{}(f[x]  |  x  <  n))  supposing  \mforall{}x:\mBbbN{}n.  (\muparrow{}isEven(f[x]))



Date html generated: 2020_05_19-PM-10_01_50
Last ObjectModification: 2019_11_12-PM-02_22_12

Theory : num_thy_1


Home Index