Nuprl Lemma : isEven-sum

[n:ℕ]. ∀[f:ℕn ⟶ ℤ].  uiff(↑isEven(Σ(f[x] x < n));↑isEven(||filter(λx.isOdd(f[x]);upto(n))||))


Proof




Definitions occuring in Statement :  isEven: isEven(n) isOdd: isOdd(n) upto: upto(n) sum: Σ(f[x] x < k) length: ||as|| filter: filter(P;l) int_seg: {i..j-} nat: assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T not: ¬A implies:  Q false: False nat: so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: rev_implies:  Q so_lambda: λ2x.t[x] iff: ⇐⇒ Q
Lemmas referenced :  istype-assert isOdd_wf length_wf int_seg_wf filter_wf5 upto_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than l_member_wf iff_weakening_uiff assert_wf sum_wf isOdd-sum isEven_wf not_wf even-iff-not-odd assert_witness istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut independent_pairFormation introduction hypothesis sqequalRule sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality voidElimination functionIsTypeImplies inhabitedIsType functionIsType extract_by_obid isectElimination natural_numberEquality setElimination rename because_Cache applyEquality dependent_set_memberEquality_alt productElimination imageElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt universeIsType productIsType setIsType lambdaFormation_alt promote_hyp

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    uiff(\muparrow{}isEven(\mSigma{}(f[x]  |  x  <  n));\muparrow{}isEven(||filter(\mlambda{}x.isOdd(f[x]);upto(n))||))



Date html generated: 2020_05_19-PM-10_01_30
Last ObjectModification: 2019_11_12-PM-02_18_22

Theory : num_thy_1


Home Index