Nuprl Lemma : even-iff-not-odd
∀[n:ℤ]. uiff(↑isEven(n);¬↑isOdd(n))
Proof
Definitions occuring in Statement :
isEven: isEven(n)
,
isOdd: isOdd(n)
,
assert: ↑b
,
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
not: ¬A
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
all: ∀x:A. B[x]
,
guard: {T}
,
prop: ℙ
,
bor: p ∨bq
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
sq_type: SQType(T)
,
assert: ↑b
,
btrue: tt
,
true: True
Lemmas referenced :
even-implies,
assert_wf,
isOdd_wf,
isEven_wf,
odd-or-even,
not_assert_elim,
and_wf,
equal_wf,
bool_wf,
bor_wf,
assert_elim,
subtype_base_sq,
bool_subtype_base,
assert_witness,
not_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
independent_pairFormation,
lambdaFormation,
thin,
lemma_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
hypothesisEquality,
independent_functionElimination,
hypothesis,
productElimination,
voidElimination,
isectElimination,
sqequalRule,
lambdaEquality,
because_Cache,
independent_isectElimination,
equalitySymmetry,
dependent_set_memberEquality,
equalityTransitivity,
applyEquality,
setElimination,
rename,
setEquality,
instantiate,
cumulativity,
natural_numberEquality,
independent_pairEquality,
isect_memberEquality,
intEquality
Latex:
\mforall{}[n:\mBbbZ{}]. uiff(\muparrow{}isEven(n);\mneg{}\muparrow{}isOdd(n))
Date html generated:
2016_05_14-PM-04_24_04
Last ObjectModification:
2015_12_26-PM-08_19_25
Theory : num_thy_1
Home
Index