Step
*
1
1
1
1
of Lemma
exp_difference_factor
1. n : ℕ+
2. x : ℤ
3. y : ℤ
⊢ (x^n - y^n) = (Σ(x^n - i * y^i | i < n) - Σ(x^n - i + 1 * y^i + 1 | i < n)) ∈ ℤ
BY
{ ((RW (AddrC [3;2] (LemmaC `sum_split1`)) 0 THENA Auto)
THEN (RW (AddrC [3;1] (LemmaC `sum_split_first`)) 0 THENA Auto)
) }
1
1. n : ℕ+
2. x : ℤ
3. y : ℤ
⊢ (x^n - y^n)
= (((x^n - 0 * y^0) + Σ(x^n - i + 1 * y^i + 1 | i < n - 1)) - Σ(x^n - i + 1 * y^i + 1 | i < n - 1)
+ (x^n - (n - 1) + 1 * y^(n - 1) + 1))
∈ ℤ
Latex:
Latex:
1. n : \mBbbN{}\msupplus{}
2. x : \mBbbZ{}
3. y : \mBbbZ{}
\mvdash{} (x\^{}n - y\^{}n) = (\mSigma{}(x\^{}n - i * y\^{}i | i < n) - \mSigma{}(x\^{}n - i + 1 * y\^{}i + 1 | i < n))
By
Latex:
((RW (AddrC [3;2] (LemmaC `sum\_split1`)) 0 THENA Auto)
THEN (RW (AddrC [3;1] (LemmaC `sum\_split\_first`)) 0 THENA Auto)
)
Home
Index