Step
*
of Lemma
fibs_wf
fibs() ∈ stream(ℕ)
BY
{ ((RepUR ``fibs`` 0
THEN Subst' λfibs.1.1.stream-zip(λx,y. (x + y);fibs;s-tl(fibs))
~ λfibs.1.(λfibs.1.stream-zip(λx,y. (x + y);fibs;s-tl(fibs))) fibs 0
THEN Try ((Reduce 0 THEN Trivial)))⋅
THEN GenConcl⌜(λfibs.1.stream-zip(λx,y. (x + y);fibs;s-tl(fibs)))
= f
∈ (⋂n:ℕ. (primrec(n;Top;λ,T. (ℕ × T)) ⟶ primrec(n;Top;λ,T. (ℕ × T))))⌝⋅
THEN skip{(Auto THEN Auto')}) }
1
.....wf.....
λfibs.1.stream-zip(λx,y. (x + y);fibs;s-tl(fibs)) ∈ ⋂n:ℕ. (primrec(n;Top;λ,T. (ℕ × T)) ⟶ primrec(n;Top;λ,T. (ℕ × T)))
2
1. f : ⋂n:ℕ. (primrec(n;Top;λ,T. (ℕ × T)) ⟶ primrec(n;Top;λ,T. (ℕ × T)))
2. (λfibs.1.stream-zip(λx,y. (x + y);fibs;s-tl(fibs))) = f ∈ (⋂n:ℕ. (primrec(n;Top;λ,T. (ℕ × T)) ⟶ primrec(n;Top;λ,T. (\000Cℕ × T))))
⊢ fix((λfibs.1.f fibs)) ∈ stream(ℕ)
Latex:
Latex:
fibs() \mmember{} stream(\mBbbN{})
By
Latex:
((RepUR ``fibs`` 0
THEN Subst' \mlambda{}fibs.1.1.stream-zip(\mlambda{}x,y. (x + y);fibs;s-tl(fibs))
\msim{} \mlambda{}fibs.1.(\mlambda{}fibs.1.stream-zip(\mlambda{}x,y. (x + y);fibs;s-tl(fibs))) fibs 0
THEN Try ((Reduce 0 THEN Trivial)))\mcdot{}
THEN GenConcl\mkleeneopen{}(\mlambda{}fibs.1.stream-zip(\mlambda{}x,y. (x + y);fibs;s-tl(fibs))) = f\mkleeneclose{}\mcdot{}
THEN skip\{(Auto THEN Auto')\})
Home
Index