Nuprl Lemma : fibs_wf

fibs() ∈ stream(ℕ)


Proof




Definitions occuring in Statement :  fibs: fibs() stream: stream(A) nat: member: t ∈ T
Definitions unfolded in proof :  fibs: fibs() all: x:A. B[x] implies:  Q member: t ∈ T nat: uall: [x:A]. B[x] ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: bool: 𝔹 unit: Unit it: btrue: tt subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff guard: {T} s-cons: x.s sq_type: SQType(T) iff: ⇐⇒ Q rev_implies:  Q s-tl: s-tl(s) pi2: snd(t) bnot: ¬bb assert: b nat_plus: + subtract: m less_than: a < b squash: T cand: c∧ B stream: stream(A) corec: corec(T.F[T])
Lemmas referenced :  nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-nat primrec-unroll lt_int_wf uiff_transitivity equal-wf-base bool_wf set_subtype_base le_wf int_subtype_base assert_wf less_than_wf eqtt_to_assert assert_of_lt_int le_int_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int intformless_wf int_formula_prop_less_lemma not_wf istype-less_than istype-assert bool_cases subtype_base_sq bool_subtype_base iff_transitivity iff_weakening_uiff assert_of_bnot nat_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma stream-zip_wf2 bool_cases_sqequal assert-bnot decidable__lt primrec1_lemma primrec0_lemma istype-top nat_plus_properties subtype_rel_wf primrec_wf top_wf istype-universe int_seg_wf primrec-wf-nat-plus add-subtract-cancel subtype_rel_product add-associates add-swap add-commutes zero-add ge_wf subtract-1-ge-0
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut Error :inhabitedIsType,  hypothesis Error :lambdaFormation_alt,  thin Error :equalityIstype,  hypothesisEquality sqequalHypSubstitution equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination Error :lambdaEquality_alt,  Error :dependent_set_memberEquality_alt,  addEquality setElimination rename introduction extract_by_obid isectElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  because_Cache equalityElimination baseApply closedConclusion baseClosed applyEquality intEquality productElimination independent_pairEquality Error :functionIsType,  instantiate cumulativity promote_hyp Error :productIsType,  universeEquality productEquality imageElimination intWeakElimination axiomEquality Error :functionIsTypeImplies

Latex:
fibs()  \mmember{}  stream(\mBbbN{})



Date html generated: 2019_06_20-PM-02_28_03
Last ObjectModification: 2019_03_13-PM-07_34_59

Theory : num_thy_1


Home Index