Nuprl Lemma : fibs_wf
fibs() ∈ stream(ℕ)
Proof
Definitions occuring in Statement : 
fibs: fibs(), 
stream: stream(A), 
nat: ℕ, 
member: t ∈ T
Definitions unfolded in proof : 
fibs: fibs(), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
guard: {T}, 
s-cons: x.s, 
sq_type: SQType(T), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
s-tl: s-tl(s), 
pi2: snd(t), 
bnot: ¬bb, 
assert: ↑b, 
nat_plus: ℕ+, 
subtract: n - m, 
less_than: a < b, 
squash: ↓T, 
cand: A c∧ B, 
stream: stream(A), 
corec: corec(T.F[T])
Lemmas referenced : 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-nat, 
primrec-unroll, 
lt_int_wf, 
uiff_transitivity, 
equal-wf-base, 
bool_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
assert_wf, 
less_than_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
le_int_wf, 
bnot_wf, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
intformless_wf, 
int_formula_prop_less_lemma, 
not_wf, 
istype-less_than, 
istype-assert, 
bool_cases, 
subtype_base_sq, 
bool_subtype_base, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
nat_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
stream-zip_wf2, 
bool_cases_sqequal, 
assert-bnot, 
decidable__lt, 
primrec1_lemma, 
primrec0_lemma, 
istype-top, 
nat_plus_properties, 
subtype_rel_wf, 
primrec_wf, 
top_wf, 
istype-universe, 
int_seg_wf, 
primrec-wf-nat-plus, 
add-subtract-cancel, 
subtype_rel_product, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
ge_wf, 
subtract-1-ge-0
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
Error :inhabitedIsType, 
hypothesis, 
Error :lambdaFormation_alt, 
thin, 
Error :equalityIstype, 
hypothesisEquality, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
Error :lambdaEquality_alt, 
Error :dependent_set_memberEquality_alt, 
addEquality, 
setElimination, 
rename, 
introduction, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
Error :universeIsType, 
because_Cache, 
equalityElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
intEquality, 
productElimination, 
independent_pairEquality, 
Error :functionIsType, 
instantiate, 
cumulativity, 
promote_hyp, 
Error :productIsType, 
universeEquality, 
productEquality, 
imageElimination, 
intWeakElimination, 
axiomEquality, 
Error :functionIsTypeImplies
Latex:
fibs()  \mmember{}  stream(\mBbbN{})
Date html generated:
2019_06_20-PM-02_28_03
Last ObjectModification:
2019_03_13-PM-07_34_59
Theory : num_thy_1
Home
Index