Step
*
2
2
of Lemma
increasing_split
1. m : ℤ
2. [%1] : 0 < m
3. ∀[P:ℕm - 1 ⟶ ℙ]
((∀i:ℕm - 1. Dec(P i))
⇒ (∃n,k:ℕ
∃f:ℕn ⟶ ℕm - 1
∃g:ℕk ⟶ ℕm - 1
(increasing(f;n)
∧ increasing(g;k)
∧ (∀i:ℕn. (P (f i)))
∧ (∀j:ℕk. (¬(P (g j))))
∧ (∀i:ℕm - 1. ((∃j:ℕn. (i = (f j) ∈ ℤ)) ∨ (∃j:ℕk. (i = (g j) ∈ ℤ)))))))
4. [P] : ℕm ⟶ ℙ
5. ∀i:ℕm. Dec(P i)
6. ∃n,k:ℕ
∃f:ℕn ⟶ ℕm - 1
∃g:ℕk ⟶ ℕm - 1
(increasing(f;n)
∧ increasing(g;k)
∧ (∀i:ℕn. (P (f i)))
∧ (∀j:ℕk. (¬(P (g j))))
∧ (∀i:ℕm - 1. ((∃j:ℕn. (i = (f j) ∈ ℤ)) ∨ (∃j:ℕk. (i = (g j) ∈ ℤ)))))
⊢ ∃n,k:ℕ
∃f:ℕn ⟶ ℕm
∃g:ℕk ⟶ ℕm
(increasing(f;n)
∧ increasing(g;k)
∧ (∀i:ℕn. (P (f i)))
∧ (∀j:ℕk. (¬(P (g j))))
∧ (∀i:ℕm. ((∃j:ℕn. (i = (f j) ∈ ℤ)) ∨ (∃j:ℕk. (i = (g j) ∈ ℤ)))))
BY
{ (((InstHyp [m - 1] (-2) THENA Auto') THEN D (-1)) THEN ExRepD) }
1
1. m : ℤ
2. [%1] : 0 < m
3. ∀[P:ℕm - 1 ⟶ ℙ]
((∀i:ℕm - 1. Dec(P i))
⇒ (∃n,k:ℕ
∃f:ℕn ⟶ ℕm - 1
∃g:ℕk ⟶ ℕm - 1
(increasing(f;n)
∧ increasing(g;k)
∧ (∀i:ℕn. (P (f i)))
∧ (∀j:ℕk. (¬(P (g j))))
∧ (∀i:ℕm - 1. ((∃j:ℕn. (i = (f j) ∈ ℤ)) ∨ (∃j:ℕk. (i = (g j) ∈ ℤ)))))))
4. [P] : ℕm ⟶ ℙ
5. ∀i:ℕm. Dec(P i)
6. n : ℕ
7. k : ℕ
8. f : ℕn ⟶ ℕm - 1
9. g : ℕk ⟶ ℕm - 1
10. increasing(f;n)
11. increasing(g;k)
12. ∀i:ℕn. (P (f i))
13. ∀j:ℕk. (¬(P (g j)))
14. ∀i:ℕm - 1. ((∃j:ℕn. (i = (f j) ∈ ℤ)) ∨ (∃j:ℕk. (i = (g j) ∈ ℤ)))
15. P (m - 1)
⊢ ∃n,k:ℕ
∃f:ℕn ⟶ ℕm
∃g:ℕk ⟶ ℕm
(increasing(f;n)
∧ increasing(g;k)
∧ (∀i:ℕn. (P (f i)))
∧ (∀j:ℕk. (¬(P (g j))))
∧ (∀i:ℕm. ((∃j:ℕn. (i = (f j) ∈ ℤ)) ∨ (∃j:ℕk. (i = (g j) ∈ ℤ)))))
2
1. m : ℤ
2. [%1] : 0 < m
3. ∀[P:ℕm - 1 ⟶ ℙ]
((∀i:ℕm - 1. Dec(P i))
⇒ (∃n,k:ℕ
∃f:ℕn ⟶ ℕm - 1
∃g:ℕk ⟶ ℕm - 1
(increasing(f;n)
∧ increasing(g;k)
∧ (∀i:ℕn. (P (f i)))
∧ (∀j:ℕk. (¬(P (g j))))
∧ (∀i:ℕm - 1. ((∃j:ℕn. (i = (f j) ∈ ℤ)) ∨ (∃j:ℕk. (i = (g j) ∈ ℤ)))))))
4. [P] : ℕm ⟶ ℙ
5. ∀i:ℕm. Dec(P i)
6. n : ℕ
7. k : ℕ
8. f : ℕn ⟶ ℕm - 1
9. g : ℕk ⟶ ℕm - 1
10. increasing(f;n)
11. increasing(g;k)
12. ∀i:ℕn. (P (f i))
13. ∀j:ℕk. (¬(P (g j)))
14. ∀i:ℕm - 1. ((∃j:ℕn. (i = (f j) ∈ ℤ)) ∨ (∃j:ℕk. (i = (g j) ∈ ℤ)))
15. ¬(P (m - 1))
⊢ ∃n,k:ℕ
∃f:ℕn ⟶ ℕm
∃g:ℕk ⟶ ℕm
(increasing(f;n)
∧ increasing(g;k)
∧ (∀i:ℕn. (P (f i)))
∧ (∀j:ℕk. (¬(P (g j))))
∧ (∀i:ℕm. ((∃j:ℕn. (i = (f j) ∈ ℤ)) ∨ (∃j:ℕk. (i = (g j) ∈ ℤ)))))
Latex:
Latex:
1. m : \mBbbZ{}
2. [\%1] : 0 < m
3. \mforall{}[P:\mBbbN{}m - 1 {}\mrightarrow{} \mBbbP{}]
((\mforall{}i:\mBbbN{}m - 1. Dec(P i))
{}\mRightarrow{} (\mexists{}n,k:\mBbbN{}
\mexists{}f:\mBbbN{}n {}\mrightarrow{} \mBbbN{}m - 1
\mexists{}g:\mBbbN{}k {}\mrightarrow{} \mBbbN{}m - 1
(increasing(f;n)
\mwedge{} increasing(g;k)
\mwedge{} (\mforall{}i:\mBbbN{}n. (P (f i)))
\mwedge{} (\mforall{}j:\mBbbN{}k. (\mneg{}(P (g j))))
\mwedge{} (\mforall{}i:\mBbbN{}m - 1. ((\mexists{}j:\mBbbN{}n. (i = (f j))) \mvee{} (\mexists{}j:\mBbbN{}k. (i = (g j))))))))
4. [P] : \mBbbN{}m {}\mrightarrow{} \mBbbP{}
5. \mforall{}i:\mBbbN{}m. Dec(P i)
6. \mexists{}n,k:\mBbbN{}
\mexists{}f:\mBbbN{}n {}\mrightarrow{} \mBbbN{}m - 1
\mexists{}g:\mBbbN{}k {}\mrightarrow{} \mBbbN{}m - 1
(increasing(f;n)
\mwedge{} increasing(g;k)
\mwedge{} (\mforall{}i:\mBbbN{}n. (P (f i)))
\mwedge{} (\mforall{}j:\mBbbN{}k. (\mneg{}(P (g j))))
\mwedge{} (\mforall{}i:\mBbbN{}m - 1. ((\mexists{}j:\mBbbN{}n. (i = (f j))) \mvee{} (\mexists{}j:\mBbbN{}k. (i = (g j))))))
\mvdash{} \mexists{}n,k:\mBbbN{}
\mexists{}f:\mBbbN{}n {}\mrightarrow{} \mBbbN{}m
\mexists{}g:\mBbbN{}k {}\mrightarrow{} \mBbbN{}m
(increasing(f;n)
\mwedge{} increasing(g;k)
\mwedge{} (\mforall{}i:\mBbbN{}n. (P (f i)))
\mwedge{} (\mforall{}j:\mBbbN{}k. (\mneg{}(P (g j))))
\mwedge{} (\mforall{}i:\mBbbN{}m. ((\mexists{}j:\mBbbN{}n. (i = (f j))) \mvee{} (\mexists{}j:\mBbbN{}k. (i = (g j))))))
By
Latex:
(((InstHyp [m - 1] (-2) THENA Auto') THEN D (-1)) THEN ExRepD)
Home
Index