Nuprl Lemma : increasing_split
∀m:ℕ
  ∀[P:ℕm ⟶ ℙ]
    ((∀i:ℕm. Dec(P i))
    
⇒ (∃n,k:ℕ
         ∃f:ℕn ⟶ ℕm
          ∃g:ℕk ⟶ ℕm
           (increasing(f;n)
           ∧ increasing(g;k)
           ∧ (∀i:ℕn. (P (f i)))
           ∧ (∀j:ℕk. (¬(P (g j))))
           ∧ (∀i:ℕm. ((∃j:ℕn. (i = (f j) ∈ ℤ)) ∨ (∃j:ℕk. (i = (g j) ∈ ℤ)))))))
Proof
Definitions occuring in Statement : 
increasing: increasing(f;k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
not: ¬A
, 
false: False
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
cand: A c∧ B
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
true: True
, 
ge: i ≥ j 
, 
fappend: f[n:=x]
, 
increasing: increasing(f;k)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
int_seg_wf, 
subtract_wf, 
decidable_wf, 
istype-nat, 
increasing_wf, 
subtype_rel_self, 
istype-void, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
istype-int, 
istype-less_than, 
primrec-wf2, 
uall_wf, 
subtype_rel_universe1, 
all_wf, 
exists_wf, 
nat_wf, 
not_wf, 
or_wf, 
equal-wf-base, 
equal_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
int_seg_properties, 
id_increasing, 
le_wf, 
false_wf, 
subtype_rel_function, 
int_seg_subtype, 
istype-false, 
decidable__le, 
not-le-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-commutes, 
le-add-cancel2, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
less_than_wf, 
istype-le, 
nat_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
fappend_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
add-subtract-cancel, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
bool_wf, 
decidable__equal_int, 
assert_elim, 
bnot_wf, 
squash_wf, 
true_wf, 
istype-universe, 
eq_int_eq_true, 
iff_weakening_equal, 
bfalse_wf, 
btrue_neq_bfalse, 
assert_wf, 
uiff_transitivity, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
btrue_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
thin, 
rename, 
setElimination, 
sqequalRule, 
Error :isectIsType, 
Error :functionIsType, 
Error :universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
because_Cache, 
applyEquality, 
Error :productIsType, 
functionExtensionality, 
Error :lambdaEquality_alt, 
Error :inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
Error :unionIsType, 
Error :equalityIsType4, 
intEquality, 
closedConclusion, 
independent_isectElimination, 
Error :setIsType, 
functionEquality, 
cumulativity, 
productEquality, 
independent_functionElimination, 
computeAll, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
int_eqEquality, 
dependent_pairFormation, 
productElimination, 
lambdaEquality, 
lambdaFormation, 
independent_pairFormation, 
dependent_set_memberEquality, 
isect_memberFormation, 
Error :isect_memberFormation_alt, 
unionElimination, 
addEquality, 
minusEquality, 
Error :isect_memberEquality_alt, 
multiplyEquality, 
Error :dependent_set_memberEquality_alt, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
equalityElimination, 
promote_hyp, 
Error :equalityIsType1, 
baseApply, 
baseClosed, 
applyLambdaEquality, 
imageElimination, 
Error :inlFormation_alt, 
imageMemberEquality, 
Error :inrFormation_alt, 
Error :equalityIsType2
Latex:
\mforall{}m:\mBbbN{}
    \mforall{}[P:\mBbbN{}m  {}\mrightarrow{}  \mBbbP{}]
        ((\mforall{}i:\mBbbN{}m.  Dec(P  i))
        {}\mRightarrow{}  (\mexists{}n,k:\mBbbN{}
                  \mexists{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}m
                    \mexists{}g:\mBbbN{}k  {}\mrightarrow{}  \mBbbN{}m
                      (increasing(f;n)
                      \mwedge{}  increasing(g;k)
                      \mwedge{}  (\mforall{}i:\mBbbN{}n.  (P  (f  i)))
                      \mwedge{}  (\mforall{}j:\mBbbN{}k.  (\mneg{}(P  (g  j))))
                      \mwedge{}  (\mforall{}i:\mBbbN{}m.  ((\mexists{}j:\mBbbN{}n.  (i  =  (f  j)))  \mvee{}  (\mexists{}j:\mBbbN{}k.  (i  =  (g  j))))))))
Date html generated:
2019_06_20-PM-02_29_21
Last ObjectModification:
2018_10_29-PM-06_04_20
Theory : num_thy_1
Home
Index