Nuprl Lemma : increasing_split

m:ℕ
  ∀[P:ℕm ⟶ ℙ]
    ((∀i:ℕm. Dec(P i))
     (∃n,k:ℕ
         ∃f:ℕn ⟶ ℕm
          ∃g:ℕk ⟶ ℕm
           (increasing(f;n)
           ∧ increasing(g;k)
           ∧ (∀i:ℕn. (P (f i)))
           ∧ (∀j:ℕk. (P (g j))))
           ∧ (∀i:ℕm. ((∃j:ℕn. (i (f j) ∈ ℤ)) ∨ (∃j:ℕk. (i (g j) ∈ ℤ)))))))


Proof




Definitions occuring in Statement :  increasing: increasing(f;k) int_seg: {i..j-} nat: decidable: Dec(P) uall: [x:A]. B[x] prop: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T prop: exists: x:A. B[x] nat: and: P ∧ Q subtype_rel: A ⊆B int_seg: {i..j-} not: ¬A false: False or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) lelt: i ≤ j < k guard: {T} cand: c∧ B less_than': less_than'(a;b) le: A ≤ B decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m true: True ge: i ≥  fappend: f[n:=x] increasing: increasing(f;k) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  less_than: a < b squash: T
Lemmas referenced :  int_seg_wf subtract_wf decidable_wf istype-nat increasing_wf subtype_rel_self istype-void set_subtype_base lelt_wf int_subtype_base istype-int istype-less_than primrec-wf2 uall_wf subtype_rel_universe1 all_wf exists_wf nat_wf not_wf or_wf equal-wf-base equal_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf satisfiable-full-omega-tt int_seg_properties id_increasing le_wf false_wf subtype_rel_function int_seg_subtype istype-false decidable__le not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2 decidable__lt full-omega-unsat intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma less_than_wf istype-le nat_properties itermAdd_wf int_term_value_add_lemma fappend_wf eq_int_wf eqtt_to_assert assert_of_eq_int add-subtract-cancel intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int bool_wf decidable__equal_int assert_elim bnot_wf squash_wf true_wf istype-universe eq_int_eq_true iff_weakening_equal bfalse_wf btrue_neq_bfalse assert_wf uiff_transitivity iff_transitivity iff_weakening_uiff assert_of_bnot btrue_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut thin rename setElimination sqequalRule Error :isectIsType,  Error :functionIsType,  Error :universeIsType,  introduction extract_by_obid sqequalHypSubstitution isectElimination natural_numberEquality hypothesisEquality hypothesis universeEquality because_Cache applyEquality Error :productIsType,  functionExtensionality Error :lambdaEquality_alt,  Error :inhabitedIsType,  equalityTransitivity equalitySymmetry instantiate Error :unionIsType,  Error :equalityIsType4,  intEquality closedConclusion independent_isectElimination Error :setIsType,  functionEquality cumulativity productEquality independent_functionElimination computeAll voidEquality voidElimination isect_memberEquality dependent_functionElimination int_eqEquality dependent_pairFormation productElimination lambdaEquality lambdaFormation independent_pairFormation dependent_set_memberEquality isect_memberFormation Error :isect_memberFormation_alt,  unionElimination addEquality minusEquality Error :isect_memberEquality_alt,  multiplyEquality Error :dependent_set_memberEquality_alt,  approximateComputation Error :dependent_pairFormation_alt,  equalityElimination promote_hyp Error :equalityIsType1,  baseApply baseClosed applyLambdaEquality imageElimination Error :inlFormation_alt,  imageMemberEquality Error :inrFormation_alt,  Error :equalityIsType2

Latex:
\mforall{}m:\mBbbN{}
    \mforall{}[P:\mBbbN{}m  {}\mrightarrow{}  \mBbbP{}]
        ((\mforall{}i:\mBbbN{}m.  Dec(P  i))
        {}\mRightarrow{}  (\mexists{}n,k:\mBbbN{}
                  \mexists{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}m
                    \mexists{}g:\mBbbN{}k  {}\mrightarrow{}  \mBbbN{}m
                      (increasing(f;n)
                      \mwedge{}  increasing(g;k)
                      \mwedge{}  (\mforall{}i:\mBbbN{}n.  (P  (f  i)))
                      \mwedge{}  (\mforall{}j:\mBbbN{}k.  (\mneg{}(P  (g  j))))
                      \mwedge{}  (\mforall{}i:\mBbbN{}m.  ((\mexists{}j:\mBbbN{}n.  (i  =  (f  j)))  \mvee{}  (\mexists{}j:\mBbbN{}k.  (i  =  (g  j))))))))



Date html generated: 2019_06_20-PM-02_29_21
Last ObjectModification: 2018_10_29-PM-06_04_20

Theory : num_thy_1


Home Index