Nuprl Lemma : fappend_wf

[n,m:ℕ]. ∀[f:ℕn ⟶ ℕm]. ∀[x:ℕm].  (f[n:=x] ∈ ℕ1 ⟶ ℕm)


Proof




Definitions occuring in Statement :  fappend: f[n:=x] int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] int_seg: {i..j-} nat: prop: lelt: i ≤ j < k and: P ∧ Q guard: {T} ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top le: A ≤ B less_than: a < b fappend: f[n:=x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  eq_int_wf bool_wf equal-wf-T-base assert_wf equal_wf bnot_wf not_wf int_seg_wf int_seg_properties nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf intformeq_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf lelt_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis because_Cache equalityTransitivity equalitySymmetry baseClosed intEquality applyEquality functionExtensionality natural_numberEquality dependent_set_memberEquality productElimination independent_pairFormation dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll isect_memberFormation lambdaFormation equalityElimination independent_functionElimination impliesFunctionality addEquality axiomEquality functionEquality

Latex:
\mforall{}[n,m:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}m].  \mforall{}[x:\mBbbN{}m].    (f[n:=x]  \mmember{}  \mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbN{}m)



Date html generated: 2017_04_17-AM-09_50_45
Last ObjectModification: 2017_02_27-PM-05_46_00

Theory : num_thy_1


Home Index