Nuprl Lemma : fappend_wf
∀[n,m:ℕ]. ∀[f:ℕn ⟶ ℕm]. ∀[x:ℕm].  (f[n:=x] ∈ ℕn + 1 ⟶ ℕm)
Proof
Definitions occuring in Statement : 
fappend: f[n:=x], 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
int_seg: {i..j-}, 
nat: ℕ, 
prop: ℙ, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
guard: {T}, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
le: A ≤ B, 
less_than: a < b, 
fappend: f[n:=x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
eq_int_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
equal_wf, 
bnot_wf, 
not_wf, 
int_seg_wf, 
int_seg_properties, 
nat_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
intformeq_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
lelt_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
intEquality, 
applyEquality, 
functionExtensionality, 
natural_numberEquality, 
dependent_set_memberEquality, 
productElimination, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
computeAll, 
isect_memberFormation, 
lambdaFormation, 
equalityElimination, 
independent_functionElimination, 
impliesFunctionality, 
addEquality, 
axiomEquality, 
functionEquality
Latex:
\mforall{}[n,m:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}m].  \mforall{}[x:\mBbbN{}m].    (f[n:=x]  \mmember{}  \mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbN{}m)
Date html generated:
2017_04_17-AM-09_50_45
Last ObjectModification:
2017_02_27-PM-05_46_00
Theory : num_thy_1
Home
Index