Nuprl Lemma : id_increasing
∀[k:ℕ]. increasing(λi.i;k)
Proof
Definitions occuring in Statement : 
increasing: increasing(f;k)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
Definitions unfolded in proof : 
increasing: increasing(f;k)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
int_seg_wf, 
subtract_wf, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-associates, 
add-commutes, 
le-add-cancel, 
member-less_than, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
addEquality, 
natural_numberEquality, 
hypothesis, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
isectElimination, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
minusEquality, 
because_Cache, 
multiplyEquality
Latex:
\mforall{}[k:\mBbbN{}].  increasing(\mlambda{}i.i;k)
Date html generated:
2016_05_13-PM-04_02_11
Last ObjectModification:
2015_12_26-AM-10_56_36
Theory : int_1
Home
Index