Step
*
of Lemma
int_mod_2_union_int_mod_3
ℤ_2 ⋃ ℤ_3 ≡ ⇃(ℤ)
BY
{ ((Assert EquivRel(ℤ;x,y.True) BY
Repeat ((D 0 THEN Auto)))
THEN (Using [`B',⌜ℤ_1⌝] (BLemma `ext-eq_transitivity`)⋅ THEN Auto)
) }
1
1. EquivRel(ℤ;x,y.True)
⊢ ℤ_2 ⋃ ℤ_3 ≡ ℤ_1
2
1. EquivRel(ℤ;x,y.True)
⊢ ℤ_1 ≡ ⇃(ℤ)
Latex:
Latex:
\mBbbZ{}\_2 \mcup{} \mBbbZ{}\_3 \mequiv{} \00D9(\mBbbZ{})
By
Latex:
((Assert EquivRel(\mBbbZ{};x,y.True) BY
Repeat ((D 0 THEN Auto)))
THEN (Using [`B',\mkleeneopen{}\mBbbZ{}\_1\mkleeneclose{}] (BLemma `ext-eq\_transitivity`)\mcdot{} THEN Auto)
)
Home
Index