Nuprl Lemma : int_mod_2_union_int_mod_3
ℤ_2 ⋃ ℤ_3 ≡ ⇃(ℤ)
Proof
Definitions occuring in Statement : 
int_mod: ℤ_n, 
quotient: x,y:A//B[x; y], 
b-union: A ⋃ B, 
ext-eq: A ≡ B, 
true: True, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
and: P ∧ Q, 
refl: Refl(T;x,y.E[x; y]), 
all: ∀x:A. B[x], 
true: True, 
member: t ∈ T, 
cand: A c∧ B, 
sym: Sym(T;x,y.E[x; y]), 
implies: P ⇒ Q, 
prop: ℙ, 
trans: Trans(T;x,y.E[x; y]), 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
gcd: gcd(a;b), 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
bfalse: ff, 
btrue: tt, 
ext-eq: A ≡ B, 
subtype_rel: A ⊆r B, 
int_mod: ℤ_n, 
quotient: x,y:A//B[x; y], 
eqmod: a ≡ b mod m
Lemmas referenced : 
subtract_wf, 
one_divs_any, 
eqmod_equiv_rel, 
eqmod_wf, 
equal-wf-base, 
quotient-member-eq, 
less_than_wf, 
int_mod_union_int_mod, 
quotient_wf, 
int_mod_wf, 
b-union_wf, 
ext-eq_transitivity, 
true_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
lambdaFormation, 
natural_numberEquality, 
intEquality, 
lemma_by_obid, 
hypothesis, 
because_Cache, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
dependent_set_memberEquality, 
introduction, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
productEquality
Latex:
\mBbbZ{}\_2  \mcup{}  \mBbbZ{}\_3  \mequiv{}  \00D9(\mBbbZ{})
Date html generated:
2016_05_14-PM-09_27_40
Last ObjectModification:
2016_01_14-PM-11_33_03
Theory : num_thy_1
Home
Index