Nuprl Lemma : int_mod_2_union_int_mod_3
ℤ_2 ⋃ ℤ_3 ≡ ⇃(ℤ)
Proof
Definitions occuring in Statement : 
int_mod: ℤ_n
, 
quotient: x,y:A//B[x; y]
, 
b-union: A ⋃ B
, 
ext-eq: A ≡ B
, 
true: True
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
true: True
, 
member: t ∈ T
, 
cand: A c∧ B
, 
sym: Sym(T;x,y.E[x; y])
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
trans: Trans(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
gcd: gcd(a;b)
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
bfalse: ff
, 
btrue: tt
, 
ext-eq: A ≡ B
, 
subtype_rel: A ⊆r B
, 
int_mod: ℤ_n
, 
quotient: x,y:A//B[x; y]
, 
eqmod: a ≡ b mod m
Lemmas referenced : 
subtract_wf, 
one_divs_any, 
eqmod_equiv_rel, 
eqmod_wf, 
equal-wf-base, 
quotient-member-eq, 
less_than_wf, 
int_mod_union_int_mod, 
quotient_wf, 
int_mod_wf, 
b-union_wf, 
ext-eq_transitivity, 
true_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
lambdaFormation, 
natural_numberEquality, 
intEquality, 
lemma_by_obid, 
hypothesis, 
because_Cache, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
dependent_set_memberEquality, 
introduction, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
productEquality
Latex:
\mBbbZ{}\_2  \mcup{}  \mBbbZ{}\_3  \mequiv{}  \00D9(\mBbbZ{})
Date html generated:
2016_05_14-PM-09_27_40
Last ObjectModification:
2016_01_14-PM-11_33_03
Theory : num_thy_1
Home
Index