Nuprl Lemma : eqmod_wf

[m,a,b:ℤ].  (a ≡ mod m ∈ ℙ)


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m uall: [x:A]. B[x] prop: member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eqmod: a ≡ mod m
Lemmas referenced :  divides_wf subtract_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  isect_memberEquality intEquality because_Cache Error :universeIsType

Latex:
\mforall{}[m,a,b:\mBbbZ{}].    (a  \mequiv{}  b  mod  m  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-02_24_01
Last ObjectModification: 2018_09_26-PM-05_50_47

Theory : num_thy_1


Home Index