Nuprl Lemma : int_mod_wf

[n:ℤ]. (ℤ_n ∈ Type)


Proof




Definitions occuring in Statement :  int_mod: _n uall: [x:A]. B[x] member: t ∈ T int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_mod: _n so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  quotient_wf eqmod_wf eqmod_equiv_rel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality lambdaEquality hypothesisEquality hypothesis because_Cache independent_isectElimination dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbZ{}].  (\mBbbZ{}\_n  \mmember{}  Type)



Date html generated: 2016_05_14-PM-09_25_56
Last ObjectModification: 2015_12_26-PM-08_02_42

Theory : num_thy_1


Home Index