Nuprl Lemma : ext-eq_transitivity

[A,B,C:Type].  (A ≡ C) supposing (B ≡ and A ≡ B)


Proof




Definitions occuring in Statement :  ext-eq: A ≡ B uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  ext-eq: A ≡ B uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B prop:
Lemmas referenced :  and_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin lambdaEquality hypothesisEquality applyEquality hypothesis independent_pairFormation independent_pairEquality axiomEquality lemma_by_obid isectElimination isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A,B,C:Type].    (A  \mequiv{}  C)  supposing  (B  \mequiv{}  C  and  A  \mequiv{}  B)



Date html generated: 2016_05_13-PM-03_19_07
Last ObjectModification: 2015_12_26-AM-09_07_56

Theory : subtype_0


Home Index