Nuprl Lemma : int_mod_union_int_mod
∀[n,m:ℕ+].  ℤ_n ⋃ ℤ_m ≡ ℤ_gcd(n;m)
Proof
Definitions occuring in Statement : 
int_mod: ℤ_n
, 
gcd: gcd(a;b)
, 
nat_plus: ℕ+
, 
b-union: A ⋃ B
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
bfalse: ff
, 
btrue: tt
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
subtract: n - m
, 
rev_implies: P 
⇐ Q
, 
true: True
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
eqmod: a ≡ b mod m
, 
divides: b | a
, 
ge: i ≥ j 
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
gcd_p: GCD(a;b;y)
, 
cand: A c∧ B
, 
nat: ℕ
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
int_mod: ℤ_n
, 
quotient: x,y:A//B[x; y]
, 
prop: ℙ
, 
b-union: A ⋃ B
, 
tunion: ⋃x:A.B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
ifthenelse: if b then t else f fi 
, 
pi2: snd(t)
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
Lemmas referenced : 
bfalse_wf, 
btrue_wf, 
quotient-member-eq, 
eqmod_equiv_rel, 
ifthenelse_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
minus-one-mul, 
add-commutes, 
mul-distributes-right, 
mul-associates, 
mul-swap, 
mul-commutes, 
one-mul, 
add_functionality_wrt_eq, 
mul_assoc, 
subtype_rel_self, 
iff_weakening_equal, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
assoced_nelim, 
istype-le, 
int_term_value_add_lemma, 
itermAdd_wf, 
mul_preserves_eq, 
subtype_base_sq, 
nat_properties, 
decidable__equal_int, 
intformeq_wf, 
itermMultiply_wf, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
set_subtype_base, 
less_than_wf, 
int_subtype_base, 
le_wf, 
divides_wf, 
gcd_unique, 
gcd_sat_pred, 
gcd-reduce, 
gcd-positive, 
nat_plus_subtype_nat, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
eqmod_wf, 
istype-int, 
subtype_rel_int_mod, 
gcd_is_divisor_1, 
gcd_is_divisor_2, 
b-union_wf, 
int_mod_wf, 
gcd_wf, 
nat_plus_wf
Rules used in proof : 
dependent_pairEquality_alt, 
minusEquality, 
hyp_replacement, 
universeEquality, 
imageMemberEquality, 
dependent_set_memberEquality_alt, 
instantiate, 
cumulativity, 
addEquality, 
multiplyEquality, 
intEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_isectElimination, 
natural_numberEquality, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
voidElimination, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
promote_hyp, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation_alt, 
equalityIstype, 
productIsType, 
sqequalBase, 
imageElimination, 
unionElimination, 
equalityElimination, 
applyEquality, 
independent_functionElimination, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
lambdaEquality_alt, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
because_Cache, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[n,m:\mBbbN{}\msupplus{}].    \mBbbZ{}\_n  \mcup{}  \mBbbZ{}\_m  \mequiv{}  \mBbbZ{}\_gcd(n;m)
Date html generated:
2019_10_15-AM-10_25_32
Last ObjectModification:
2019_09_20-PM-03_53_56
Theory : num_thy_1
Home
Index