Nuprl Lemma : int_mod_union_int_mod

[n,m:ℕ+].  ℤ_n ⋃ ℤ_m ≡ ℤ_gcd(n;m)


Proof




Definitions occuring in Statement :  int_mod: _n gcd: gcd(a;b) nat_plus: + b-union: A ⋃ B ext-eq: A ≡ B uall: [x:A]. B[x]
Definitions unfolded in proof :  bfalse: ff btrue: tt so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtract: m rev_implies:  Q true: True squash: T iff: ⇐⇒ Q guard: {T} sq_type: SQType(T) less_than: a < b eqmod: a ≡ mod m divides: a ge: i ≥  so_lambda: λ2x.t[x] so_apply: x[s] gcd_p: GCD(a;b;y) cand: c∧ B nat: uimplies: supposing a exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top int_mod: _n quotient: x,y:A//B[x; y] prop: b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) implies:  Q uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B nat_plus: + all: x:A. B[x]
Lemmas referenced :  bfalse_wf btrue_wf quotient-member-eq eqmod_equiv_rel ifthenelse_wf itermSubtract_wf int_term_value_subtract_lemma minus-one-mul add-commutes mul-distributes-right mul-associates mul-swap mul-commutes one-mul add_functionality_wrt_eq mul_assoc subtype_rel_self iff_weakening_equal equal_wf squash_wf true_wf istype-universe assoced_nelim istype-le int_term_value_add_lemma itermAdd_wf mul_preserves_eq subtype_base_sq nat_properties decidable__equal_int intformeq_wf itermMultiply_wf int_formula_prop_eq_lemma int_term_value_mul_lemma set_subtype_base less_than_wf int_subtype_base le_wf divides_wf gcd_unique gcd_sat_pred gcd-reduce gcd-positive nat_plus_subtype_nat nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformle_wf int_formula_prop_le_lemma eqmod_wf istype-int subtype_rel_int_mod gcd_is_divisor_1 gcd_is_divisor_2 b-union_wf int_mod_wf gcd_wf nat_plus_wf
Rules used in proof :  dependent_pairEquality_alt minusEquality hyp_replacement universeEquality imageMemberEquality dependent_set_memberEquality_alt instantiate cumulativity addEquality multiplyEquality intEquality baseApply closedConclusion baseClosed independent_isectElimination natural_numberEquality approximateComputation dependent_pairFormation_alt int_eqEquality voidElimination pointwiseFunctionalityForEquality pertypeElimination promote_hyp equalityTransitivity equalitySymmetry lambdaFormation_alt equalityIstype productIsType sqequalBase imageElimination unionElimination equalityElimination applyEquality independent_functionElimination sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation lambdaEquality_alt universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis dependent_functionElimination because_Cache sqequalRule productElimination independent_pairEquality axiomEquality inhabitedIsType isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[n,m:\mBbbN{}\msupplus{}].    \mBbbZ{}\_n  \mcup{}  \mBbbZ{}\_m  \mequiv{}  \mBbbZ{}\_gcd(n;m)



Date html generated: 2019_10_15-AM-10_25_32
Last ObjectModification: 2019_09_20-PM-03_53_56

Theory : num_thy_1


Home Index