Nuprl Lemma : gcd-reduce

p,q:ℤ.  ∃g:ℕ. ∃a,b,x,y:ℤ((p (a g) ∈ ℤ) ∧ (q (b g) ∈ ℤ) ∧ (((x a) (y b)) 1 ∈ ℤ))


Proof




Definitions occuring in Statement :  nat: all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  absval: |i| sign: sign(x) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than': less_than'(a;b) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b label: ...$L... t rev_implies:  Q iff: ⇐⇒ Q true: True nat_plus: + nequal: a ≠ b ∈  int_nzero: -o top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A ge: i ≥  cand: c∧ B guard: {T} sq_type: SQType(T) or: P ∨ Q decidable: Dec(P) so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] prop: uimplies: supposing a so_apply: x[s] squash: T less_than: a < b le: A ≤ B lelt: i ≤ j < k so_lambda: λ2x.t[x] int_seg: {i..j-} subtype_rel: A ⊆B and: P ∧ Q exists: x:A. B[x] nat: uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  bnot_of_le_int assert_functionality_wrt_uiff uiff_transitivity assert_wf bnot_wf absval_unfold lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf le_int_wf assert_of_le_int satisfiable-full-omega-tt eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot itermMinus_wf int_term_value_minus_lemma sign_wf equal-wf-base-T absval_wf int_term_value_subtract_lemma itermSubtract_wf mul_assoc int_nzero_wf mul-commutes iff_weakening_equal mul_add_distrib istype-universe true_wf squash_wf div_rem_sum subtract_wf divide_wfa istype-le decidable__le istype-less_than int_formula_prop_le_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf intformless_wf intformand_wf decidable__lt rem_bounds_1 int-value-type equal_wf set-value-type nequal_wf remainder_wfa int_term_value_add_lemma itermAdd_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_eq_lemma istype-void int_formula_prop_not_lemma itermVar_wf itermMultiply_wf itermConstant_wf intformeq_wf intformnot_wf full-omega-unsat nat_properties subtype_base_sq decidable__equal_int subtype_rel_self subtype_rel_function equal-wf-base exists_wf nat_wf all_wf natrec_wf istype-nat le_wf int_subtype_base lelt_wf set_subtype_base istype-int int_seg_wf
Rules used in proof :  minusEquality equalityElimination lessCases isect_memberFormation axiomSqEquality isect_memberEquality voidEquality dependent_pairFormation computeAll promote_hyp dependent_pairEquality independent_pairEquality axiomEquality lambdaEquality lambdaFormation imageMemberEquality universeEquality hyp_replacement multiplyEquality addEquality cutEval Error :dependent_set_memberEquality_alt,  independent_pairFormation voidElimination Error :isect_memberEquality_alt,  int_eqEquality Error :dependent_pairFormation_alt,  approximateComputation independent_functionElimination cumulativity instantiate unionElimination dependent_functionElimination functionEquality functionExtensionality productEquality equalityTransitivity equalitySymmetry sqequalBase baseClosed closedConclusion baseApply independent_isectElimination imageElimination productElimination Error :lambdaEquality_alt,  intEquality applyEquality Error :equalityIstype,  because_Cache Error :productIsType,  hypothesis rename setElimination natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction Error :universeIsType,  Error :functionIsType,  sqequalRule hypothesisEquality Error :inhabitedIsType,  Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution cut

Latex:
\mforall{}p,q:\mBbbZ{}.    \mexists{}g:\mBbbN{}.  \mexists{}a,b,x,y:\mBbbZ{}.  ((p  =  (a  *  g))  \mwedge{}  (q  =  (b  *  g))  \mwedge{}  (((x  *  a)  +  (y  *  b))  =  1))



Date html generated: 2019_06_20-PM-02_27_10
Last ObjectModification: 2019_06_19-PM-02_31_44

Theory : num_thy_1


Home Index