Nuprl Lemma : gcd-reduce
∀p,q:ℤ.  ∃g:ℕ. ∃a,b,x,y:ℤ. ((p = (a * g) ∈ ℤ) ∧ (q = (b * g) ∈ ℤ) ∧ (((x * a) + (y * b)) = 1 ∈ ℤ))
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
absval: |i|
, 
sign: sign(x)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
less_than': less_than'(a;b)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
label: ...$L... t
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
nat_plus: ℕ+
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
ge: i ≥ j 
, 
cand: A c∧ B
, 
guard: {T}
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
squash: ↓T
, 
less_than: a < b
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
bnot_of_le_int, 
assert_functionality_wrt_uiff, 
uiff_transitivity, 
assert_wf, 
bnot_wf, 
absval_unfold, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
less_than_wf, 
le_int_wf, 
assert_of_le_int, 
satisfiable-full-omega-tt, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
itermMinus_wf, 
int_term_value_minus_lemma, 
sign_wf, 
equal-wf-base-T, 
absval_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
mul_assoc, 
int_nzero_wf, 
mul-commutes, 
iff_weakening_equal, 
mul_add_distrib, 
istype-universe, 
true_wf, 
squash_wf, 
div_rem_sum, 
subtract_wf, 
divide_wfa, 
istype-le, 
decidable__le, 
istype-less_than, 
int_formula_prop_le_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
intformless_wf, 
intformand_wf, 
decidable__lt, 
rem_bounds_1, 
int-value-type, 
equal_wf, 
set-value-type, 
nequal_wf, 
remainder_wfa, 
int_term_value_add_lemma, 
itermAdd_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
itermVar_wf, 
itermMultiply_wf, 
itermConstant_wf, 
intformeq_wf, 
intformnot_wf, 
full-omega-unsat, 
nat_properties, 
subtype_base_sq, 
decidable__equal_int, 
subtype_rel_self, 
subtype_rel_function, 
equal-wf-base, 
exists_wf, 
nat_wf, 
all_wf, 
natrec_wf, 
istype-nat, 
le_wf, 
int_subtype_base, 
lelt_wf, 
set_subtype_base, 
istype-int, 
int_seg_wf
Rules used in proof : 
minusEquality, 
equalityElimination, 
lessCases, 
isect_memberFormation, 
axiomSqEquality, 
isect_memberEquality, 
voidEquality, 
dependent_pairFormation, 
computeAll, 
promote_hyp, 
dependent_pairEquality, 
independent_pairEquality, 
axiomEquality, 
lambdaEquality, 
lambdaFormation, 
imageMemberEquality, 
universeEquality, 
hyp_replacement, 
multiplyEquality, 
addEquality, 
cutEval, 
Error :dependent_set_memberEquality_alt, 
independent_pairFormation, 
voidElimination, 
Error :isect_memberEquality_alt, 
int_eqEquality, 
Error :dependent_pairFormation_alt, 
approximateComputation, 
independent_functionElimination, 
cumulativity, 
instantiate, 
unionElimination, 
dependent_functionElimination, 
functionEquality, 
functionExtensionality, 
productEquality, 
equalityTransitivity, 
equalitySymmetry, 
sqequalBase, 
baseClosed, 
closedConclusion, 
baseApply, 
independent_isectElimination, 
imageElimination, 
productElimination, 
Error :lambdaEquality_alt, 
intEquality, 
applyEquality, 
Error :equalityIstype, 
because_Cache, 
Error :productIsType, 
hypothesis, 
rename, 
setElimination, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
Error :universeIsType, 
Error :functionIsType, 
sqequalRule, 
hypothesisEquality, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
cut
Latex:
\mforall{}p,q:\mBbbZ{}.    \mexists{}g:\mBbbN{}.  \mexists{}a,b,x,y:\mBbbZ{}.  ((p  =  (a  *  g))  \mwedge{}  (q  =  (b  *  g))  \mwedge{}  (((x  *  a)  +  (y  *  b))  =  1))
Date html generated:
2019_06_20-PM-02_27_10
Last ObjectModification:
2019_06_19-PM-02_31_44
Theory : num_thy_1
Home
Index