Step * of Lemma gcd-reduce

p,q:ℤ.  ∃g:ℕ. ∃a,b,x,y:ℤ((p (a g) ∈ ℤ) ∧ (q (b g) ∈ ℤ) ∧ (((x a) (y b)) 1 ∈ ℤ))
BY
Assert ⌜∀p,q:ℕ.  ∃g:ℕ. ∃a,b,x,y:ℤ((p (a g) ∈ ℤ) ∧ (q (b g) ∈ ℤ) ∧ (((x a) (y b)) 1 ∈ ℤ))⌝
⋅ }

1
.....assertion..... 
p,q:ℕ.  ∃g:ℕ. ∃a,b,x,y:ℤ((p (a g) ∈ ℤ) ∧ (q (b g) ∈ ℤ) ∧ (((x a) (y b)) 1 ∈ ℤ))

2
1. ∀p,q:ℕ.  ∃g:ℕ. ∃a,b,x,y:ℤ((p (a g) ∈ ℤ) ∧ (q (b g) ∈ ℤ) ∧ (((x a) (y b)) 1 ∈ ℤ))
⊢ ∀p,q:ℤ.  ∃g:ℕ. ∃a,b,x,y:ℤ((p (a g) ∈ ℤ) ∧ (q (b g) ∈ ℤ) ∧ (((x a) (y b)) 1 ∈ ℤ))


Latex:


Latex:
\mforall{}p,q:\mBbbZ{}.    \mexists{}g:\mBbbN{}.  \mexists{}a,b,x,y:\mBbbZ{}.  ((p  =  (a  *  g))  \mwedge{}  (q  =  (b  *  g))  \mwedge{}  (((x  *  a)  +  (y  *  b))  =  1))


By


Latex:
Assert  \mkleeneopen{}\mforall{}p,q:\mBbbN{}.    \mexists{}g:\mBbbN{}.  \mexists{}a,b,x,y:\mBbbZ{}.  ((p  =  (a  *  g))  \mwedge{}  (q  =  (b  *  g))  \mwedge{}  (((x  *  a)  +  (y  *  b))  =  1))\mkleeneclose{}
\mcdot{}




Home Index