Nuprl Lemma : assoced_nelim
∀a,b:ℕ.  (a ~ b 
⇐⇒ a = b ∈ ℤ)
Proof
Definitions occuring in Statement : 
assoced: a ~ b
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
nat: ℕ
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
assoced_elim, 
istype-int, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
nat_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermMinus_wf, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_minus_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
assoced_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_functionElimination, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
promote_hyp, 
because_Cache, 
sqequalRule, 
Error :unionIsType, 
Error :equalityIsType4, 
applyEquality, 
isectElimination, 
intEquality, 
Error :lambdaEquality_alt, 
natural_numberEquality, 
independent_isectElimination, 
minusEquality, 
unionElimination, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :universeIsType, 
Error :inlFormation_alt, 
Error :inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}a,b:\mBbbN{}.    (a  \msim{}  b  \mLeftarrow{}{}\mRightarrow{}  a  =  b)
Date html generated:
2019_06_20-PM-02_21_15
Last ObjectModification:
2018_10_02-PM-11_35_06
Theory : num_thy_1
Home
Index