Nuprl Lemma : assoced_nelim

a,b:ℕ.  (a ⇐⇒ b ∈ ℤ)


Proof




Definitions occuring in Statement :  assoced: b nat: all: x:A. B[x] iff: ⇐⇒ Q int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T nat: rev_implies:  Q or: P ∨ Q subtype_rel: A ⊆B uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop:
Lemmas referenced :  assoced_elim istype-int set_subtype_base le_wf int_subtype_base nat_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf itermMinus_wf intformle_wf itermConstant_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_minus_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf assoced_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut sqequalHypSubstitution productElimination thin independent_functionElimination introduction extract_by_obid dependent_functionElimination setElimination rename hypothesisEquality hypothesis independent_pairFormation promote_hyp because_Cache sqequalRule Error :unionIsType,  Error :equalityIsType4,  applyEquality isectElimination intEquality Error :lambdaEquality_alt,  natural_numberEquality independent_isectElimination minusEquality unionElimination approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :universeIsType,  Error :inlFormation_alt,  Error :inhabitedIsType,  equalityTransitivity equalitySymmetry

Latex:
\mforall{}a,b:\mBbbN{}.    (a  \msim{}  b  \mLeftarrow{}{}\mRightarrow{}  a  =  b)



Date html generated: 2019_06_20-PM-02_21_15
Last ObjectModification: 2018_10_02-PM-11_35_06

Theory : num_thy_1


Home Index