Nuprl Lemma : assoced_elim

a,b:ℤ.  (a ⇐⇒ (a b ∈ ℤ) ∨ (a (-b) ∈ ℤ))


Proof




Definitions occuring in Statement :  assoced: b all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q minus: -n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] assoced: b member: t ∈ T pm_equal: = ± j iff: ⇐⇒ Q and: P ∧ Q implies:  Q or: P ∨ Q subtype_rel: A ⊆B rev_implies:  Q uall: [x:A]. B[x] prop:
Lemmas referenced :  istype-int int_subtype_base assoc_reln divides_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :inhabitedIsType,  hypothesisEquality cut introduction extract_by_obid hypothesis independent_pairFormation sqequalRule Error :unionIsType,  Error :equalityIsType4,  applyEquality sqequalHypSubstitution because_Cache minusEquality productElimination thin independent_functionElimination dependent_functionElimination Error :productIsType,  Error :universeIsType,  isectElimination promote_hyp

Latex:
\mforall{}a,b:\mBbbZ{}.    (a  \msim{}  b  \mLeftarrow{}{}\mRightarrow{}  (a  =  b)  \mvee{}  (a  =  (-b)))



Date html generated: 2019_06_20-PM-02_21_06
Last ObjectModification: 2018_10_03-AM-10_23_38

Theory : num_thy_1


Home Index