Nuprl Lemma : assoc_reln

a,b:ℤ.  ((a b) ∧ (b a) ⇐⇒ = ± b)


Proof




Definitions occuring in Statement :  divides: a pm_equal: = ± j all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q int:
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q pm_equal: = ± j or: P ∨ Q divides: a exists: x:A. B[x] decidable: Dec(P) uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top subtype_rel: A ⊆B
Lemmas referenced :  divides_wf pm_equal_wf istype-int divides_anti_sym decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf itermMultiply_wf itermConstant_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_wf int_subtype_base itermMinus_wf int_term_value_minus_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  independent_pairFormation sqequalHypSubstitution productElimination thin sqequalRule Error :productIsType,  Error :universeIsType,  cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis Error :inhabitedIsType,  dependent_functionElimination independent_functionElimination unionElimination Error :dependent_pairFormation_alt,  natural_numberEquality because_Cache independent_isectElimination approximateComputation Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :equalityIsType4,  applyEquality multiplyEquality minusEquality

Latex:
\mforall{}a,b:\mBbbZ{}.    ((a  |  b)  \mwedge{}  (b  |  a)  \mLeftarrow{}{}\mRightarrow{}  a  =  \mpm{}  b)



Date html generated: 2019_06_20-PM-02_20_16
Last ObjectModification: 2018_10_03-AM-00_35_37

Theory : num_thy_1


Home Index