Nuprl Lemma : pm_equal_wf
∀[a,b:ℤ].  (a = ± b ∈ ℙ)
Proof
Definitions occuring in Statement : 
pm_equal: i = ± j
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pm_equal: i = ± j
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
or_wf, 
equal-wf-base, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
because_Cache, 
baseApply, 
closedConclusion, 
baseClosed, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
isect_memberEquality, 
Error :universeIsType
Latex:
\mforall{}[a,b:\mBbbZ{}].    (a  =  \mpm{}  b  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-01_13_35
Last ObjectModification:
2018_09_26-PM-02_32_18
Theory : int_2
Home
Index