Nuprl Lemma : pm_equal_wf

[a,b:ℤ].  (a = ± b ∈ ℙ)


Proof




Definitions occuring in Statement :  pm_equal: = ± j uall: [x:A]. B[x] prop: member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pm_equal: = ± j subtype_rel: A ⊆B
Lemmas referenced :  or_wf equal-wf-base int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesisEquality applyEquality hypothesis because_Cache baseApply closedConclusion baseClosed axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  isect_memberEquality Error :universeIsType

Latex:
\mforall{}[a,b:\mBbbZ{}].    (a  =  \mpm{}  b  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-01_13_35
Last ObjectModification: 2018_09_26-PM-02_32_18

Theory : int_2


Home Index