Nuprl Lemma : divides_anti_sym
∀a,b:ℤ.  ((a | b) ⇒ (b | a) ⇒ a = ± b)
Proof
Definitions occuring in Statement : 
divides: b | a, 
pm_equal: i = ± j, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
uimplies: b supposing a
Lemmas referenced : 
divides_wf, 
istype-int, 
divides_of_absvals, 
absval_eq, 
divides_anti_sym_n, 
absval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :inhabitedIsType, 
dependent_functionElimination, 
productElimination, 
independent_pairFormation, 
independent_functionElimination, 
independent_isectElimination
Latex:
\mforall{}a,b:\mBbbZ{}.    ((a  |  b)  {}\mRightarrow{}  (b  |  a)  {}\mRightarrow{}  a  =  \mpm{}  b)
Date html generated:
2019_06_20-PM-02_20_12
Last ObjectModification:
2018_10_03-AM-00_35_45
Theory : num_thy_1
Home
Index