Step
*
1
1
1
2
of Lemma
isqrt_newton_wf
1. d : ℕ
2. ∀d:ℕd. ∀n,x:ℕ+.
(((((x + 1) * (x + 1)) - n) ≤ d)
⇒ n < (x + 1) * (x + 1)
⇒ (isqrt_newton(n;x) ∈ ∃r:ℕ [(((r * r) ≤ n) ∧ n < (r + 1) * (r + 1))]))
3. n : ℕ+@i
4. x : ℕ+@i
5. (((x + 1) * (x + 1)) - n) ≤ d
6. n < (x + 1) * (x + 1)
7. v : ℤ@i
8. (x + (n ÷ x)) = v ∈ ℤ
9. ((n - n rem x) + (x * x)) = (v * x) ∈ ℤ
10. 0 ≤ (n rem x)
11. n rem x < x
12. 0 ≤ (n ÷ x)
13. v1 : ℤ@i
14. (v ÷ 2) = v1 ∈ ℤ
15. (v - v rem 2) = (2 * v1) ∈ ℤ
16. 0 ≤ (v rem 2)
17. v rem 2 < 2
18. (v rem 2) ≤ 1
19. (x * (v rem 2)) ≤ (x * 1)
20. ((v * x) + ((-1) * x * (v rem 2))) = (2 * v1 * x) ∈ ℤ
21. (x * 0) ≤ (x * (v rem 2))
22. ¬(x ≤ v1)
⊢ if v1=x then v1 else if (x) < (v1) then x else isqrt_newton(n;v1) ∈ ∃r:ℕ [(((r * r) ≤ n) ∧ n < (r + 1) * (r + 1))]
BY
{ TACTIC:RepeatFor 2 (AutoSplit) }
1
1. d : ℕ
2. ∀d:ℕd. ∀n,x:ℕ+.
(((((x + 1) * (x + 1)) - n) ≤ d)
⇒ n < (x + 1) * (x + 1)
⇒ (isqrt_newton(n;x) ∈ ∃r:ℕ [(((r * r) ≤ n) ∧ n < (r + 1) * (r + 1))]))
3. n : ℕ+@i
4. x : ℕ+@i
5. (((x + 1) * (x + 1)) - n) ≤ d
6. n < (x + 1) * (x + 1)
7. v : ℤ@i
8. (x + (n ÷ x)) = v ∈ ℤ
9. ((n - n rem x) + (x * x)) = (v * x) ∈ ℤ
10. 0 ≤ (n rem x)
11. n rem x < x
12. 0 ≤ (n ÷ x)
13. v1 : ℤ@i
14. ¬x < v1
15. v1 ≠ x
16. (v ÷ 2) = v1 ∈ ℤ
17. (v - v rem 2) = (2 * v1) ∈ ℤ
18. 0 ≤ (v rem 2)
19. v rem 2 < 2
20. (v rem 2) ≤ 1
21. (x * (v rem 2)) ≤ (x * 1)
22. ((v * x) + ((-1) * x * (v rem 2))) = (2 * v1 * x) ∈ ℤ
23. (x * 0) ≤ (x * (v rem 2))
24. ¬(x ≤ v1)
⊢ isqrt_newton(n;v1) ∈ ∃r:ℕ [(((r * r) ≤ n) ∧ n < (r + 1) * (r + 1))]
Latex:
Latex:
1. d : \mBbbN{}
2. \mforall{}d:\mBbbN{}d. \mforall{}n,x:\mBbbN{}\msupplus{}.
(((((x + 1) * (x + 1)) - n) \mleq{} d)
{}\mRightarrow{} n < (x + 1) * (x + 1)
{}\mRightarrow{} (isqrt\_newton(n;x) \mmember{} \mexists{}r:\mBbbN{} [(((r * r) \mleq{} n) \mwedge{} n < (r + 1) * (r + 1))]))
3. n : \mBbbN{}\msupplus{}@i
4. x : \mBbbN{}\msupplus{}@i
5. (((x + 1) * (x + 1)) - n) \mleq{} d
6. n < (x + 1) * (x + 1)
7. v : \mBbbZ{}@i
8. (x + (n \mdiv{} x)) = v
9. ((n - n rem x) + (x * x)) = (v * x)
10. 0 \mleq{} (n rem x)
11. n rem x < x
12. 0 \mleq{} (n \mdiv{} x)
13. v1 : \mBbbZ{}@i
14. (v \mdiv{} 2) = v1
15. (v - v rem 2) = (2 * v1)
16. 0 \mleq{} (v rem 2)
17. v rem 2 < 2
18. (v rem 2) \mleq{} 1
19. (x * (v rem 2)) \mleq{} (x * 1)
20. ((v * x) + ((-1) * x * (v rem 2))) = (2 * v1 * x)
21. (x * 0) \mleq{} (x * (v rem 2))
22. \mneg{}(x \mleq{} v1)
\mvdash{} if v1=x then v1 else if (x) < (v1) then x else isqrt\_newton(n;v1) \mmember{} \mexists{}r:\mBbbN{} [(((r * r) \mleq{} n)
\mwedge{} n < (r + 1)
* (r + 1))]
By
Latex:
TACTIC:RepeatFor 2 (AutoSplit)
Home
Index