Nuprl Lemma : isqrt_newton_wf

n,x:ℕ+.  isqrt_newton(n;x) ∈ ∃r:ℕ [(((r r) ≤ n) ∧ n < (r 1) (r 1))] supposing n < (x 1) (x 1)


Proof




Definitions occuring in Statement :  isqrt_newton: isqrt_newton(n;x) nat_plus: + nat: less_than: a < b uimplies: supposing a le: A ≤ B all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q member: t ∈ T multiply: m add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T nat: uall: [x:A]. B[x] nat_plus: + decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: ge: i ≥  guard: {T} int_seg: {i..j-} lelt: i ≤ j < k subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) isqrt_newton: isqrt_newton(n;x) nequal: a ≠ b ∈  has-value: (a)↓ int_nzero: -o true: True less_than: a < b squash: T le: A ≤ B less_than': less_than'(a;b) subtract: m sq_exists: x:A [B[x]] cand: c∧ B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  subtract_wf nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermMultiply_wf itermAdd_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_mul_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf less_than_wf nat_plus_wf nat_properties ge_wf int_seg_wf int_seg_properties decidable__equal_int subtype_base_sq set_subtype_base int_subtype_base intformeq_wf int_formula_prop_eq_lemma decidable__lt lelt_wf subtype_rel_self equal-wf-base value-type-has-value int-value-type mul_preserves_eq equal_wf nat_wf div_rem_sum2 subtype_rel_sets nequal_wf rem_bounds_1 nat_plus_subtype_nat div_bounds_1 true_wf mul-distributes mul-commutes add-commutes mul_preserves_le minus-one-mul mul-swap mul_cancel_in_lt top_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int lt_int_wf assert_of_lt_int square_non_neg multiply-is-int-iff add-is-int-iff false_wf mul-distributes-right add-associates mul-associates one-mul two-mul less_than_functionality le_weakening multiply_functionality_wrt_le mul_preserves_lt
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction hypothesis sqequalHypSubstitution dependent_functionElimination thin dependent_set_memberEquality extract_by_obid isectElimination multiplyEquality addEquality setElimination rename because_Cache natural_numberEquality hypothesisEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation equalityTransitivity equalitySymmetry axiomEquality intWeakElimination productElimination applyEquality instantiate applyLambdaEquality hypothesis_subsumption divideEquality baseClosed callbyvalueReduce setEquality addLevel cumulativity imageElimination imageMemberEquality remainderEquality productEquality lessCases axiomSqEquality equalityElimination int_eqReduceTrueSq promote_hyp int_eqReduceFalseSq pointwiseFunctionality baseApply closedConclusion minusEquality

Latex:
\mforall{}n,x:\mBbbN{}\msupplus{}.
    isqrt\_newton(n;x)  \mmember{}  \mexists{}r:\mBbbN{}  [(((r  *  r)  \mleq{}  n)  \mwedge{}  n  <  (r  +  1)  *  (r  +  1))]  supposing  n  <  (x  +  1)  *  (x  +  1)



Date html generated: 2019_06_20-PM-02_36_09
Last ObjectModification: 2019_06_12-PM-00_25_12

Theory : num_thy_1


Home Index