Step
*
1
of Lemma
poly-choice-eta-2
1. f : Base@i
2. ∀x,y:Base.  ((f x y) = x ∈ Base)
3. (f 0)↓
4. f ~ λx.(f x)
5. x : Base
⊢ f x ~ if f x is lambda then λy.x otherwise ⊥
BY
{ TACTIC:(SqequalSqle THEN AssumeHasValue) }
1
1. f : Base@i
2. ∀x,y:Base.  ((f x y) = x ∈ Base)
3. (f 0)↓
4. f ~ λx.(f x)
5. x : Base
6. (f x)↓
⊢ f x ≤ if f x is lambda then λy.x otherwise ⊥
2
1. f : Base@i
2. ∀x,y:Base.  ((f x y) = x ∈ Base)
3. (f 0)↓
4. f ~ λx.(f x)
5. x : Base
6. is-exception(f x)
⊢ f x ≤ if f x is lambda then λy.x otherwise ⊥
3
1. f : Base@i
2. ∀x,y:Base.  ((f x y) = x ∈ Base)
3. (f 0)↓
4. f ~ λx.(f x)
5. x : Base
6. (if f x is lambda then λy.x otherwise ⊥)↓
⊢ if f x is lambda then λy.x otherwise ⊥ ≤ f x
4
1. f : Base@i
2. ∀x,y:Base.  ((f x y) = x ∈ Base)
3. (f 0)↓
4. f ~ λx.(f x)
5. x : Base
6. is-exception(if f x is lambda then λy.x otherwise ⊥)
⊢ if f x is lambda then λy.x otherwise ⊥ ≤ f x
Latex:
Latex:
1.  f  :  Base@i
2.  \mforall{}x,y:Base.    ((f  x  y)  =  x)
3.  (f  0)\mdownarrow{}
4.  f  \msim{}  \mlambda{}x.(f  x)
5.  x  :  Base
\mvdash{}  f  x  \msim{}  if  f  x  is  lambda  then  \mlambda{}y.x  otherwise  \mbot{}
By
Latex:
TACTIC:(SqequalSqle  THEN  AssumeHasValue)
Home
Index