Nuprl Lemma : poly-choice-eta-2

f:Base. ((∀x,y:Base.  ((f y) x ∈ Base))  (f ~ λx.if is lambda then λy.x otherwise ⊥))


Proof




Definitions occuring in Statement :  bottom: islambda: if is lambda then otherwise b all: x:A. B[x] implies:  Q apply: a lambda: λx.A[x] base: Base sqequal: t equal: t ∈ T
Definitions unfolded in proof :  false: False not: ¬A top: Top so_apply: x[s] so_lambda: λ2x.t[x] or: P ∨ Q has-value: (a)↓ sq_type: SQType(T) rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} subtype_rel: A ⊆B true: True prop: squash: T uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] implies:  Q all: x:A. B[x] sq_stable: SqStable(P) is-exception: is-exception(t) label: ...$L... t
Lemmas referenced :  sqle_wf_base bottom-sqle not_id_sqeq_bottom strictness-apply equal-wf-base all_wf is-exception_wf has-value_wf_base int-value-type value-type-has-value iff_weakening_equal true_wf squash_wf equal_wf subtype_rel_self base_wf subtype_base_sq has-value-implies-dec-islambda-2 sqequal-wf-base sq_stable__sqle exception-not-value not-id-sqle-bottom exception-not-bottom bottom_diverge and_wf
Rules used in proof :  sqequalSqle voidEquality voidElimination isect_memberEquality closedConclusion baseApply sqleRule sqleReflexivity divergentSqle unionElimination callbyvalueApplyCases callbyvalueApply intEquality independent_functionElimination productElimination imageMemberEquality sqequalRule natural_numberEquality because_Cache baseClosed dependent_functionElimination universeEquality equalitySymmetry equalityTransitivity hypothesisEquality imageElimination lambdaEquality applyEquality independent_isectElimination hypothesis cumulativity isectElimination sqequalHypSubstitution extract_by_obid introduction instantiate thin cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution axiomSqleEquality applyExceptionCases exceptionApplyCases sqequalIntensionalEquality sqleLambda levelHypothesis rename setElimination applyLambdaEquality dependent_set_memberEquality hyp_replacement addLevel independent_pairFormation exceptionSqequal callbyvalueIslambda islambdaExceptionCases

Latex:
\mforall{}f:Base.  ((\mforall{}x,y:Base.    ((f  x  y)  =  x))  {}\mRightarrow{}  (f  \msim{}  \mlambda{}x.if  f  x  is  lambda  then  \mlambda{}y.x  otherwise  \mbot{}))



Date html generated: 2019_06_20-PM-02_45_08
Last ObjectModification: 2019_01_12-AM-10_05_30

Theory : num_thy_1


Home Index