Nuprl Lemma : not_id_sqeq_bottom
¬(λx.x ~ ⊥)
Proof
Definitions occuring in Statement : 
bottom: ⊥
, 
not: ¬A
, 
lambda: λx.A[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
not: ¬A
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
false: False
Lemmas referenced : 
not-id-sqle-bottom, 
sqequalIffSqle
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalIntensionalEquality, 
baseClosed, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
independent_functionElimination, 
hypothesis, 
productElimination, 
voidElimination
Latex:
\mneg{}(\mlambda{}x.x  \msim{}  \mbot{})
Date html generated:
2016_05_13-PM-03_45_58
Last ObjectModification:
2016_01_14-PM-07_11_27
Theory : call!by!value_2
Home
Index