Step
*
2
1
1
of Lemma
polymorphic-choice-int
.....assertion..... 
1. f : ⋂A:Type. (A ⟶ A ⟶ A)
2. ∀x,y:Base.  (↓((f x y) = x ∈ Base) ∨ ((f x y) = y ∈ Base))
3. f ∈ ℤ ⟶ ℤ ⟶ ℤ
4. (f 0 1) = 0 ∈ ℤ
5. x : ℤ
6. y : ℤ
7. (f x y) = y ∈ Base
8. ¬(x = y ∈ ℤ)
⊢ ∃n,m:ℤ. ((¬(n = m ∈ ℤ)) ∧ ((f n m) = n ∈ ℤ) ∧ (¬(x = m ∈ ℤ)) ∧ (¬(y = n ∈ ℤ)))
BY
{ (Assert (f 2 3) = 2 ∈ Base BY
         ((InstHyp [⌜2⌝;⌜3⌝] 2⋅ THENA Auto) THEN RepeatFor 2 (D -1) THEN Auto)) }
1
.....aux..... 
1. f : ⋂A:Type. (A ⟶ A ⟶ A)
2. ∀x,y:Base.  (↓((f x y) = x ∈ Base) ∨ ((f x y) = y ∈ Base))
3. f ∈ ℤ ⟶ ℤ ⟶ ℤ
4. (f 0 1) = 0 ∈ ℤ
5. x : ℤ
6. y : ℤ
7. (f x y) = y ∈ Base
8. ¬(x = y ∈ ℤ)
9. (f 2 3) = 3 ∈ Base
⊢ (f 2 3) = 2 ∈ Base
2
1. f : ⋂A:Type. (A ⟶ A ⟶ A)
2. ∀x,y:Base.  (↓((f x y) = x ∈ Base) ∨ ((f x y) = y ∈ Base))
3. f ∈ ℤ ⟶ ℤ ⟶ ℤ
4. (f 0 1) = 0 ∈ ℤ
5. x : ℤ
6. y : ℤ
7. (f x y) = y ∈ Base
8. ¬(x = y ∈ ℤ)
9. (f 2 3) = 2 ∈ Base
⊢ ∃n,m:ℤ. ((¬(n = m ∈ ℤ)) ∧ ((f n m) = n ∈ ℤ) ∧ (¬(x = m ∈ ℤ)) ∧ (¬(y = n ∈ ℤ)))
Latex:
Latex:
.....assertion..... 
1.  f  :  \mcap{}A:Type.  (A  {}\mrightarrow{}  A  {}\mrightarrow{}  A)
2.  \mforall{}x,y:Base.    (\mdownarrow{}((f  x  y)  =  x)  \mvee{}  ((f  x  y)  =  y))
3.  f  \mmember{}  \mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}
4.  (f  0  1)  =  0
5.  x  :  \mBbbZ{}
6.  y  :  \mBbbZ{}
7.  (f  x  y)  =  y
8.  \mneg{}(x  =  y)
\mvdash{}  \mexists{}n,m:\mBbbZ{}.  ((\mneg{}(n  =  m))  \mwedge{}  ((f  n  m)  =  n)  \mwedge{}  (\mneg{}(x  =  m))  \mwedge{}  (\mneg{}(y  =  n)))
By
Latex:
(Assert  (f  2  3)  =  2  BY
              ((InstHyp  [\mkleeneopen{}2\mkleeneclose{};\mkleeneopen{}3\mkleeneclose{}]  2\mcdot{}  THENA  Auto)  THEN  RepeatFor  2  (D  -1)  THEN  Auto))
Home
Index