Nuprl Lemma : polymorphic-choice-int

f:⋂A:Type. (A ⟶ A ⟶ A). ((∀x,y:ℤ.  ((f y) x ∈ ℤ)) ∨ (∀x,y:ℤ.  ((f y) y ∈ ℤ)))


Proof




Definitions occuring in Statement :  all: x:A. B[x] or: P ∨ Q apply: a isect: x:A. B[x] function: x:A ⟶ B[x] int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T or: P ∨ Q prop: implies:  Q squash: T decidable: Dec(P) subtype_rel: A ⊆B uimplies: supposing a sq_type: SQType(T) guard: {T} label: ...$L... t true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q not: ¬A false: False int_mod: _n so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] nat_plus: + less_than: a < b less_than': less_than'(a;b) modulus: mod n int_seg: {i..j-} quotient: x,y:A//B[x; y] cand: c∧ B absval: |i| exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  istype-universe base_wf or_wf equal-wf-base istype-base decidable__equal_int int_subtype_base subtype_base_sq subtype_rel_self equal_wf squash_wf true_wf iff_weakening_equal istype-int int-subtype-int_mod int_mod_wf quotient-member-eq eqmod_wf eqmod_equiv_rel eqmod-zero modulus-equal-iff-eqmod istype-less_than modulus_wf_int_mod full-omega-unsat intformeq_wf itermConstant_wf int_formula_prop_eq_lemma istype-void int_term_value_constant_lemma int_formula_prop_wf intformand_wf itermVar_wf int_formula_prop_and_lemma int_term_value_var_lemma exists-type-equating-ints equal-wf-T-base false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut Error :isectIsType,  instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination thin universeEquality hypothesis Error :functionIsType,  Error :universeIsType,  hypothesisEquality because_Cache setEquality equalityTransitivity equalitySymmetry applyEquality Error :inlFormation_alt,  Error :equalityIstype,  Error :inhabitedIsType,  Error :dependent_set_memberEquality_alt,  sqequalRule Error :unionIsType,  Error :inrFormation_alt,  setElimination rename imageMemberEquality baseClosed imageElimination dependent_functionElimination independent_functionElimination closedConclusion intEquality natural_numberEquality unionElimination cumulativity independent_isectElimination Error :lambdaEquality_alt,  productElimination sqequalBase voidElimination independent_pairFormation pertypeElimination promote_hyp Error :productIsType,  callbyvalueReduce sqleReflexivity Error :dependent_pairFormation_alt,  approximateComputation Error :isect_memberEquality_alt,  int_eqEquality hyp_replacement applyLambdaEquality functionEquality

Latex:
\mforall{}f:\mcap{}A:Type.  (A  {}\mrightarrow{}  A  {}\mrightarrow{}  A).  ((\mforall{}x,y:\mBbbZ{}.    ((f  x  y)  =  x))  \mvee{}  (\mforall{}x,y:\mBbbZ{}.    ((f  x  y)  =  y)))



Date html generated: 2019_06_20-PM-02_44_31
Last ObjectModification: 2018_11_25-PM-01_33_30

Theory : num_thy_1


Home Index