Nuprl Lemma : exists-type-equating-ints

x,y,n,m:ℤ.
  ((¬(x y ∈ ℤ))
   (n m ∈ ℤ))
   (x m ∈ ℤ))
   (y n ∈ ℤ))
   (∃T:Type. ((x n ∈ T) ∧ (y m ∈ T) ∧ (x y ∈ T)))))


Proof




Definitions occuring in Statement :  all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] uall: [x:A]. B[x] subtype_rel: A ⊆B so_apply: x[s] exists: x:A. B[x] and: P ∧ Q cand: c∧ B or: P ∨ Q prop: guard: {T} iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top
Lemmas referenced :  type-equating-some or_wf equal-wf-base int_subtype_base equal-wf-T-base not_wf decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf equal_functionality_wrt_subtype_rel2 intformand_wf int_formula_prop_and_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin because_Cache sqequalRule lambdaEquality isectElimination hypothesisEquality applyEquality hypothesis intEquality productElimination rename dependent_pairFormation independent_pairFormation independent_functionElimination inlFormation inrFormation productEquality unionElimination natural_numberEquality independent_isectElimination approximateComputation int_eqEquality isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}x,y,n,m:\mBbbZ{}.
    ((\mneg{}(x  =  y))
    {}\mRightarrow{}  (\mneg{}(n  =  m))
    {}\mRightarrow{}  (\mneg{}(x  =  m))
    {}\mRightarrow{}  (\mneg{}(y  =  n))
    {}\mRightarrow{}  (\mexists{}T:Type.  ((x  =  n)  \mwedge{}  (y  =  m)  \mwedge{}  (\mneg{}(x  =  y)))))



Date html generated: 2018_05_21-PM-01_12_23
Last ObjectModification: 2018_05_03-PM-02_23_46

Theory : num_thy_1


Home Index