Nuprl Lemma : exists-type-equating-ints
∀x,y,n,m:ℤ.
  ((¬(x = y ∈ ℤ))
  
⇒ (¬(n = m ∈ ℤ))
  
⇒ (¬(x = m ∈ ℤ))
  
⇒ (¬(y = n ∈ ℤ))
  
⇒ (∃T:Type. ((x = n ∈ T) ∧ (y = m ∈ T) ∧ (¬(x = y ∈ T)))))
Proof
Definitions occuring in Statement : 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
or: P ∨ Q
, 
prop: ℙ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
Lemmas referenced : 
type-equating-some, 
or_wf, 
equal-wf-base, 
int_subtype_base, 
equal-wf-T-base, 
not_wf, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
equal_functionality_wrt_subtype_rel2, 
intformand_wf, 
int_formula_prop_and_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
intEquality, 
productElimination, 
rename, 
dependent_pairFormation, 
independent_pairFormation, 
independent_functionElimination, 
inlFormation, 
inrFormation, 
productEquality, 
unionElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}x,y,n,m:\mBbbZ{}.
    ((\mneg{}(x  =  y))
    {}\mRightarrow{}  (\mneg{}(n  =  m))
    {}\mRightarrow{}  (\mneg{}(x  =  m))
    {}\mRightarrow{}  (\mneg{}(y  =  n))
    {}\mRightarrow{}  (\mexists{}T:Type.  ((x  =  n)  \mwedge{}  (y  =  m)  \mwedge{}  (\mneg{}(x  =  y)))))
Date html generated:
2018_05_21-PM-01_12_23
Last ObjectModification:
2018_05_03-PM-02_23_46
Theory : num_thy_1
Home
Index